Вестник УГАМУ

МАШИНОСТРОЕНИЕ

УДК: 621.43; 519.8

А. А. Черноусов

ОПТИМАЛЬНЫЕ ПО НАПОЛНЕНИЮ ПАРАМЕТРЫ ГАЗОВОЗДУШНОГО ТРАКТА ЧЕТЫРЕХТАКТНОГО ДВС

Решена задача оптимизации размеров газовоздушного тракта четырехтактного ДВС, расчетом найдено предельное значение коэффициента наполнения – 1,426. Параметрическая оптимизация выполнена для структурной схемы тракта с профилированными впускным и выпускным каналами. Прямой расчет газообмена выполнялся в одномерной постановке по модели, реализованной в пакете программ ALLBEA. Оптимизационная задача с ограничениями решалась инструментом многопараметрической оптимизации пакета ALLBEA по генетическому алгоритму. Полученные рекомендации и использованные инструменты применимы в проектировании и доводке ДВС. Поршневые двигатели; рабочие процессы; численное моделирование; оптимизация

введение

Волновые явления в газовоздушных трактах (ГВТ) в настоящее время широко используются в двигателях внутреннего сгорания (ДВС). Волновой наддув, реализованный в современных автомобильных ДВС, при согласовании волновых явлений с фазами газообмена обеспечивает существенно повышенные показатели двигателя. В варианте с регулированием эффективных длин каналов и/или фаз газообмена удается распространить положительный эффект газодинамической «настройки» ГВТ на широкий диапазон скоростных режимов работы двигателя.

Теоретический интерес представляет определение оптимальной структуры и параметров газовоздушного тракта, при которых для определенного типа ДВС достигается максимум массового циклового наполнения окислителем (воздухом) рабочей камеры (РК).

Цель данной работы состояла в расчетной оценке предельного значения коэффициента наполнения η_{ν} безнаддувного четырехтактного двигателя с «настроенной» схемой ГВТ.

Подобная задача решалась ранее Б. П. Рудым и С. Р. Березиным. В их работах было показано, что оптимальное по наполнению использование волновых явлений в ГВТ ДВС реализуется в схеме с индивидуальными «настроенными» впускным и выпускным каналами. В работе [1] приведены результаты параметрической оптимизации, и полученное из расчетов значение

 $\eta_{V\max} = 1,33 \, \frac{\epsilon}{\epsilon - 1}$. Однако задача была постав-

лена на основе иных физических допущений и была применена иная численная реализация модели нестационарного течения в ГВТ, нежели в данной работе. Задача в данной работе ставилась для аналогичного по структуре ГВТ и решалась как задача многопараметрической оптимизации. Для моделирования газообмена применены модели процессов, описывающие нестационарное течение в ГВТ и процесс в РК ДВС в одномерном приближении. Эти модели реализованны в библиотеке gasdyn для пакета программ ALLBEA [2]. Оптимизационная задача с ограничениями решалась встроенным в ALLBEA инструментом многопараметрической оптимизации, реализующем генетический алгоритм.

Полученное в данной работе решение выражено в безразмерных величинах, что делает его применимым к 4-тактным ДВС любой размерности с идентичной схемой ГВТ.

Найденная расчетным путем предельная величина η_V , а также оптимальное сочетание приведенных оборотов двигателя, параметров профиля ГВТ и фаз газораспределения могут служить ориентировочноыми рекомендациями. Расчетная методика и сами применяемые программные инструменты могут настраиваться на широкий круг проектировочных и доводочных задач в области газообмена и рабочего процесса ДВС.

ИСХОДНАЯ ЗАВИСИМОСТЬ ДЛЯ КОЭФФИЦИЕНТА НАПОЛНЕНИЯ

Ограничимся установившимися режимами, когда любой показатель ДВС $\overline{\Psi} = [G_{\rm B}, N_i, ...]^T$, где $G_{\rm u}$ — расход воздуха; N_i — индикаторная мощность; зависит от двух «режимных» параметров, характеризующих соответственно скоростной и нагрузочный режимы: например $\overline{\Psi} = \overline{\Psi}(n, \alpha, ...)$, где n — обороты вала двигателя, α — коэффициент избытка воздуха. Предельные мощностные показатели дви-

Контактная информация: 8 (347) 272-84-05

гателя (индикаторные мощность N_i , крутящий момент M_i , эффективные показатели) выявляются по абсолютной внешней скоростной характеристике (BCX), когда фикс<u>ируется</u> $\alpha(n)$ в силу чего далее имеем в виду $\Psi = \Psi(n, ...)$. В эту многопараметрическую зависимость для заданного двигателя войдут, помимо параметра скоростного режима и параметров состояния в атмосфере (p_0, T_0) также влияющие на показатели ДВС параметры конструкции.

Расход воздуха через двигатель и показатели его мощности при прочих равных условиях прямо зависят от $m_{\rm Bu}$ – массы воздуха, поданного в РК в данном цикле и оставшегося в ней к моменту $t = t_a$ завершения газообмена:

$$G_{\rm B} = f \cdot i \cdot \varphi \cdot m_{\rm BH}, \quad N_i = H_u G_{\rm B} \eta_i,$$
$$N_e = N_i \eta_i, \quad g_e = \frac{N_e}{G_{\rm B}},$$

где f – частота рабочих циклов (для четырехтактного ДВС f = n/30), i – число цилиндров, φ – коэффициент продувки, учитывающий безвозвратные потери свежего заряда в выпускную систему, η_i и $\eta_{\rm M}$ – индикаторный и механический КПД, $\alpha = m_{\rm Bul} / (l_0 m_{\rm Tu})$ – коэффициент избытка свежего воздуха по отношению топливу в самой РК как при внешнем ($G_{\rm B} = G_{\rm T} \alpha l_0$), так и при внутреннем ($G_{\rm R} = G_{\rm T} \varphi \alpha l_0$) смесеобразовании.

Масса свежего воздуха в РК $m_{\rm BH}$ в среднем цикле на практике определяется по $G_{\rm B}$ с точностью до недоступного прямым измерениям коэффициента φ , в теории – выражается интегралом по объему

$$m_{\scriptscriptstyle B II} = \int_{V_{PK}(t_a)} \rho Y_{\scriptscriptstyle B} \, dV, \qquad (1)$$

где $\rho(r, t)$ – плотность рабочей смеси, $Y_{\rm B}(r, t)$ – массовая доля свежего воздуха в объеме РК в момент t_a завершения процессов газообмена в данном цикле.

Для удобства сравнения двигателей различной размерности (с диаметром цилиндра d_{μ} или рабочим объемом V_h) по показателю качества газообмена $m_{\mu\mu}$ данную величину относят к характерной массе воздуха и получают коэффициент наполнения

$$\eta_V = \frac{m_{\text{B}\,\text{II}}}{\rho_0 V_h},\tag{2}$$

где $\rho_0 = p_0/(RT_0)$ – плотность воздуха в окружающей атмосфере (для безнаддувных ДВС; для

двигателей с наддувом вместо ρ_0 берется плотность ρ_{κ} за компрессором).

Масса *m*_{ви} – интегральный показатель сложных нестационарных термо- и газодинамических, физических и кинетических процессов, протекающих в (*r*, *t*). Выясняя, какие определяющие параметры (факторы) влияют на *m*_{ви}, делаем определенные допущения. Так, полагаем, что для ДВС с подобными в (\overline{r} , t) очертаниями ГВТ интегральные показатели процессов газообмена, как и процессов в РК при закрытых органах газообмена, определяются скоростным режимом n (или f), величинами p_0 , T_0 и свойствами атмосферного воздуха при указанных значениях параметров состояния, и заданной зависимостью $\alpha(n)$. Должно быть задано также распределение $T_{m} = T_{m}$ (...) на стенках ГВТ; в предположении о его подобии для класса подобных (\overline{r} , t)в ГВТ температура точек поверхности ГВТ параметризуется характерным значением Т...

При таких допущениях функциональная связь – зависимость массового наполнения от определяющих факторов – примет вид

$$m_{\rm BH} = m_{\rm BH}(d_{\rm H}, f, p_0, T_0, T_w, c_{p0}, c_{v0}, \mu_0, \lambda_0, D_{\rm B0}) \quad (3)$$

В (3) учтены параметры теплофизических свойств окислителя c_{p0} , c_{v0} , μ_0 , λ_0 , $D_{в0}$ – для приближенного учета возможных отклонений его свойств от свойств воздуха.

Зависимость (3) выражает связь между n+1=11параметрами, размерности которых выражаются через k = 4 основные единицы системы СИ: кг, м, с и К. Согласно П-теореме, безразмерных параметров обобщенной функциональной связи в данном случае должно быть n+1-k=7. Комбинируя размерные параметры (3) в безразмерные комплексы и симплексы, получим, например, следующий вид искомой зависимости:

$$\frac{c_{p0}T_{0}m_{\scriptscriptstyle B\,{\scriptscriptstyle II}}}{p_{0}d_{\scriptscriptstyle B\,{\scriptscriptstyle II}}^{3}} = \frac{c_{p0}T_{0}m_{\scriptscriptstyle B\,{\scriptscriptstyle II}}}{p_{0}d_{\scriptscriptstyle II}^{3}} (\frac{fd_{\scriptscriptstyle II}}{\sqrt{c_{p0}T_{0}}}, \frac{p_{0}fd_{\scriptscriptstyle II}^{2}}{c_{p0}T_{0}\mu_{0}}, \frac{T_{\scriptscriptstyle W}}{T_{0}}, \frac{c_{p0}}{c_{\scriptscriptstyle V0}}, \frac{\mu_{0}c_{p}}{\lambda_{0}}, \frac{\mu_{0}c_{p0}T_{0}}{p_{0}D_{\scriptscriptstyle B\,0}}),$$
(4)

в которой $fd_{\rm u}/\sqrt{c_{p0}T_0}$ и $p_0fd_{\rm u}^2/(c_{p0}T_0\mu_0$ параметры, характеризующие режим течения в ГВТ – аналоги чисел M (или Sh) и Re, $T_w/T_0 = \theta_w$ температурный фактор, $\gamma_0 = c_{p0}/c_{v0}$ – отношение теплоемкостей, $\mu_0 c_{p0}/\lambda_0 = Pr_0$ – число Прандтля, $\mu_0 c_{p0} T_0 / (p_0 D_{B0}) = Sc_B - число Шмидта. Предполагая в качестве окислителя только воздух (R = <math>c_p(T) - c_v(T) = 287,1 \ \text{Дж/(кг} \cdot \text{K}), \gamma_0 = 1,40 = c_{p0}/c_{v0}, Pr_0 \approx Sc_{B0} \approx 0,72$), можно исключить γ_0 , числа Pr_0 и Sc_{B0} из набора определяющих параметров задачи. Тогда оставшиеся безразмерные параметры зависимости (4) – при следующем из подобия ГВТ постоянстве относительных размеров и выбранных значениях γ_0 и R_0 параметров уравнений состояния $\rho_0 = p_0/(RT_0)$ и $c_0 = \sqrt{\gamma RT_0}$ станут параметрами зависимости, например, следующего вида:

$$\eta_V = \eta_V (M_{\pi}, Re_{\pi}, \theta_w).$$
 (5)

Числом $M_n = \upsilon_n / c_0 в$ (5) учитываются проявления сжимаемости в потоке и степень согласованности (гомохронности) волновых явлений и перемещений поршня; здесь $\upsilon_n = 2fS$ – средняя скорость поршня, $S = 2r = (S/D) \cdot d_n$ – ход поршня, равный удвоенному радиусу *r* кривошипа.

Число $Re_n = \rho_0 \upsilon_n d_\mu / \mu_0$ приближенно характеризует здесь проявления всех эффектов молекулярного переноса, а величина θ_w позволяет учесть тепловое состояния двигателя.

Таким образом, зависимость (5) справедлива с учетом сделанных допущений, т. е. в рамках приближенного подобия она описывает влияние на наполнение «режимных» факторов в ДВС с подобными в (\overline{r} , t) очертаниями ГВТ при заданном уровне нагрузки α (n) – например, по абсолютной ВСХ. Из (5) следует, что в таких ДВС при одинаковых значениях M_n , Re_n и θ режимах будет достигаться примерно одинаковые значения η_V .

Упростить (5) далее можно, если принять течения в ГВТ ДВС (характеризуемые большими значениями числа Re_n) автомодельными по этому критерию подобия, а также пренебречь температурным фактором θ_w ; зависимость для коэффициента наполнения прмет в этом случае еще более «вырожденный» вид:

$$\eta_V = \eta_V (M_{\pi}) \tag{6}$$

Упрощать далее (6) неправомерно, так как $M_{\rm n}$ учитывает сжимаемость рабочего тела и несогласованность его волнового движения с движениями поршня и органов газообмена – эффекты, лежащие в основе нестационарных газодинамических явлений в ГВТ ДВС.

ПАРАМЕТРИЗАЦИЯ ЗАВИСИМОСТИ ДЛЯ КОЭФФИЦИЕНТА НАПОЛНЕНИЯ

Практическим приложением теории газообмена ДВС [1] является отыскание конструктивного исполнения ГВТ для оптимальной организации газообмена (в первую очередь по критерию η_V). Уже из (6) следует, что при фиксированном в (r, t) ГВТ экстремуму $\eta_{V_{\text{max}}}$ соответствует определенное значение приведенного числа оборотов вала M_n .

Принята фиксированная (рекомендованная в [1]) структурная схема ГВТ двигателя с индивидуальными впускными и выпускными каналами (рис. 1). Задача оптимизации поставлена для четырехклапанного варианта ГВТ, с соответствующими ограничениями на площади каналов в головке цилиндров и на величины подъема тарельчатых клапанов.

Параметризация геометрических очертаний ГВТ в (r, t) позволяет (для выбранной конструктивной схемы ГВТ) ставить, например, задачу отыскания предельного значения η_v при оптимальном сочетании как частоты циклов M_n , так и конструктивных размеров ГВТ, в первую очередь – параметров, определяющих длины и профили каналов и законы открытия органов газообмена.

Для выбранной схемы ГВТ (рис. 1) ДВС размерности *d*₁ были выделены для оптимизации следующие параметры и параметрически заданные зависимости, влияющие на массовое наполнение:

• ход поршня *S* (определяющий радиус кривошипа r = S/2); на величину *S* было наложено ограничение $S \ge 0.8 d_{n}$;

• длина шатуна l (определяющая, совместно с r, закон движения поршня на данных оборотах n); отношение $\lambda = r/l$ варьировалось в диапазоне 0,193...0,32;

• геометрическая степень сжатия є связывающая рабочий V_h и минимальный V_c объемы РК выражением $\varepsilon = (V_h + V_c)/V_c$; величина є варьировалсь в диапазоне 8,5...11,6;

• профиль впускного канала задавался по 4 узловым точкам семью параметрами: $L_{\text{вп 1}}, \ldots, L_{\text{вп 3}}$ и $d_{\text{вп 0}}, \ldots, d_{\text{вп 3}}$ с применением кубической интерполяции зависимости $d_{\text{вп}}(x), x \in [0, L_{\text{вп 3}}];$ выходной диаметр выпускного канала был ограничен: $d_{\text{вп 3}} < 2,5d_{\text{вп 0}};$

• профиль выпускного канала также задавался по 4 узловым точкам: $L_{\text{вп 1}}, \ldots, L_{\text{вп 3}}$ и $d_{\text{вп 0}}, \ldots, d_{\text{вп 4}}$ с кубической интерполяцией $d_{\text{вып}}(x), x \in [0, L_{\text{вып 3}}];$ выходной диаметр канала также был ограничен условием $d_{\text{вып 3}} < 2,5 d_{\text{вып 0}};$ кроме того, на диаметры примыкающих к головке цилиндра сечений каналов (на всем протяжении принятых круглыми) было наложено ограничение $d_{\text{вып 0}} + d_{\text{вып 0}} < 0,72 d_{\text{и}};$

• фазы впуска и выпуска задавались четырьмя выраженными в угловой мере параметрами – $\phi_{\text{вп}0}, \Delta \phi_{\text{вп}}, \phi_{\text{вып}0}, \Delta \phi_{\text{вып}}$ – углами начала открытия и продожительностью открытия впускного и выпускного клапанов; безразмерные законы их открытия

$$\frac{h_{\text{BH}}(\phi) = h_{\text{BH}}(\phi)/h_{\text{BH}\max}}{\bar{h}_{\text{BH}}(\phi) = h_{\text{BH}}(\phi)/h_{\text{BH}\max}},$$

были взяты от некоторого гоночного двигателя; они и подставлялись в зависимости для потерь полного давления вида σ (M_n , h_i), полученные по расчетной методике для текущей геометрии клапанов. при этом относительные значения максимальных подъемов клапанов были зафиксированы:

 $\overline{h}_{\text{вп max}} = h_{\text{вп max}} / d_{\text{вп 0}} = 0,3649,$ $\overline{h}_{\text{вып max}} = h_{\text{вып max}} / d_{\text{вып 0}} = 0,4178.$ Проведенная параметризация ГВТ заданной

Проведенная параметризация ГВТ заданной структуры, очевидно, добавляет в (6) новые безразмерные параметры (в основном – симплексы), в результате чего получается зависимость η_{ν} от 22 определяющих параметров:

$$\eta_{V} = \eta_{V} (M_{\Pi}, \frac{S}{d_{\Pi}}, \lambda = \frac{r}{l}, \varepsilon,$$

$$\overline{L}_{B\Pi 1} = \frac{L_{B\Pi 1}}{d_{\Pi}}, \dots, \overline{L}_{B\Pi 3},$$

$$\overline{d}_{B\Pi 0} = \frac{d_{B\Pi 0}}{d_{\Pi}}, \dots, \overline{d}_{B\Pi 3},$$

$$\overline{L}_{B \square 1} = \frac{L_{B \square \Pi 1}}{d_{\Pi}}, \dots, \overline{L}_{B \square \Pi 3},$$

$$\overline{d}_{B \square 0} = \frac{d_{B \square \Pi 0}}{d_{\Pi}}, \dots, \overline{d}_{B \square \Pi 3},$$

$$\overline{q}_{B \square 0}, \Delta \varphi_{B \Pi}, \varphi_{B \square 0}, \Delta \varphi_{B \square}).$$
(7)

ПОСТАНОВКА ЗАДАЧИ И ПОРЯДОК РЕШЕНИЯ

Задача отыскания глобального максимума (7) в пространстве определяющих параметров решалась при указанных выше ограничениях.

Для решения использованы компоненты пакета прикладных программ (ППП) ALLBEA [3]: (а) программа-препроцессор исходных данных allbea-prepr и (б) программа allbea-optim, реализующая генетический алгоритм оптимизации.

Для построения структурной схемы ГВТ двигателя и решения прямой задачи – вычисления целевой функции (ЦФ) по (7) – применен ППП Horsepower Lab 1D [4]; в нем используется библиотека прикладных модулей gasdyn, разрабатываемая [2] для применения в ППП ALLBEA.

В графической среде ППП Horsepower Lab 1D hpl1dw собрана показанная на рис. 2 схема модели ГВТ («сборка») и заданы условия однозначности и параметры дискретизации для численного расчета.

Рис. 2. Структурная схема модели ГВТ двигателя

В дополнение к указанным выше ограничениям и константам, в условиях однозначности были заданы: диаметр цилиндра $d_{\mu} = 50$ мм и параметры в атмосфере $p_0 - 100$ кПа и $T_0 = 300$ К, а также параметры модели топлива и рабочего процесса, а именно: топливо – бензин среднего состава с $H_u = 43.9$ МДж/кг, смесеобразование – внутреннее при $\alpha = 1,05$ модель выгорания в цилиндре–интегральная модель Вибе с параметром формы m = 1,5; процесс сгорания – $\Delta \phi_{yz} = 50^{\circ}$ по углу поворота коленчатого вала (ПКВ), полнота сгорания – $x_z = 0,99$; угол начала видимого сгорания – $\phi_y = 19,5^{\circ}$ до верхней мертвой точки (подобран как наивыгоднейший по критерию η_i).

Потери воздуха при продувке (течение при одновременно открытых впускных и выпускных клапанах) оценивались по модели мгновенного перемешивания в РК. Заданные для расчетов характеристики впускных и выпускных органов газообмена – тарельчатых клапанов – были получены по методике [5], в ходе которой для ряда высот подъема h_i рассчитываются течения газа через клапаны во всем диапазоне возможных расходов и для обоих направлений. Численные расчеты выполнялись в осесимметричной постановке (рис. 3).

Рис. 3. Поле M(x, r) на выпускном клапане

Результаты расчетов обработаны в форме зависимостей $\sigma(M_{\rm T}, \bar{h}_i)$, где σ – коэффициент сохранения полного давления, $M_{\rm T}$ – число $M_{\rm T} = u_{\rm T}/c_{\rm T}$, приведенное к граничному сечению канала («трубы»), $\bar{h}_i = h_i/d_{i\,0}$, где $d_{i\,0}$ – диаметр примыкающего к цилиндру сечения канала в модели, здесь – номинальный диаметр горловины клапанного канала (рис. 4).

Вход во впускной канал из атмосферы и выход из выпускного канала моделировались соответственно как втекание без потерь полного давления и свободное истечение из канала.

Дифференциальные уравнения модели интегрировались в расчетной программе численным методом второго порядка по времени с шагом по углу ПКВ, равным $\Delta \phi = 0,5^{\circ}$. Расчет нестационарного течения в ГВТ проводился до 20-го цикла (28 800 шагов). При указанных дискретности в численном расчете достигалась практическая сходимость: во-первых, в смысле независимости решения от шага дискретизации, т. е. шагов расчетной сетки в (*x*, *t*) (отклонение показателей – не более 0,2%). Во-вторых, достигалась сходимость к «регулярному» численному решению – отличие интегральных показателей последних циклов наблюдалось в пятом десятичном знаке.

После отладки модели в среде hpl1dw текстовые файлы расчетного проекта были параметризованы; их шаблонные версии использовались при решении оптимизационной (обратной) задачи.

Встроенный в программу allbea-optim reнетический алгоритм – универсальный итерационный метод поиска оптимального описания некоторого объекта, имитирующий эволюцию (точнее, искусственно ускоренную селекцию). Признаки объекта (здесь – все его параметры, выраженные вещественными числами) кодируются простой линейной структурой данных (массивом нулей и единиц), выполняющей роль «генотипа» объекта.

Над набором таких структур объектов на каждой итерации алгоритма производятся операции, приводящие к улучшению «генофонда» «популяции» от поколения к «поколению» – мутации, скрещивание («кроссовер»), отбор/выбраковка, сохранение элитных «производителей». Оценка соответствия объекта (члена популяции) критерию оптимальности выполняется в пользовательском модуле, служащем для расчета ЦФ по параметрам («признакам») объекта.

В данном проекте программа allbea-optim из ППП ALLBEA настраивалась на задачу динамическим подключением программного модуля, написанного на языке C++. Там запрограммированы: параметризация данных, запуск программы-солвера hpl1ds и вычисление ЦФ по результатам решения солвером прямой задачи моделирования газообмена. Ограничения на значения оптимизируемых параметров реализованы по методу штрафных функций.

При оптимизационном подборе параметров в расчете значение каждого из них варьировалось на 2^k уровнях, где k принимался для разных параметров от 5 до 11; весь «генотип» экземпляра кодировался 199-значным двоичным числом. Настройки диапазонов и дискретность варьирования параметров, а также настройки метода оптимизации прередавались программе allbeaoptim через конфигурационный файл.

Управление компиляцией и тестированием пользовательского кода и собственно решением обратной задачи реализовано с помощью стандартного системного средства make; команды, автоматизирующие расчет и представление данных по проекту, сохранены в текстовом файле Makefile.

Оптимизационный расчет проводился при следующих настройках алгоритма: число экземпляров в популяции – 50; число элитных экземпляров – 10; коэффициент мутаций – 0,20; коэффициент кроссовера – 0,2.

РЕЗУЛЬТАТЫ

Расчеты для оценки ЦФ запускались последовательно на 1 ядре процессора AMD Phenom II с тактовой частотой 3,6 ГГц.

Оптимум был выявлен к 180-му поколению (при 60 экземплярах в популяции); время счета составило 17 ч. При этом число запусков солвера hpl1ds для оценки ЦФ составило 10625, в среднем затраты времени ЦПУ составляли 5,73 с времени на 1 расчет.

В результате оптимизации определено значение максимума ЦФ (7): $\eta_{V_{max}} = 1,426$. Коэффициент продувки (характеризующий потери воздуха при продувке) составил $\varphi = 1,196$. Координаты максимума η_{V} в пространстве определяющих параметров приведены ниже.

Так, оптимальное значение «режимного» параметра $M_n = v_n/c_0$ (приведенных оборотов ДВС) оказалось равным 0,0362. Таким образом, при конкретномзначении скоростизвукав атмосфере: $c_0 = 347,3$ м/с (из условий однозначности) «оптимальные» обороты двигателя: n = 9310 об/мин; средняя скорость поршня: $\upsilon_n = 12,6$ м/с.

Оптимальные значения конструктивных параметров ГВТ следующие:

- отношение хода поршня к диаметру цидиндра: $S/d_n = 0.8$;

- отношение радиуса кривошипа к длине шатуна: *r*/*l* = 0,32;

- геометрическая степень сжатия: $\varepsilon = 8,5$.

Как можно видеть, при поиске максимума η_{V} «сработали» заданные ограничения: для є и S/d_n – ограничения на минимальное значение, для r/l – на максимальное. Объяснение очевидное: с уменьшением степени сжатия (и степени расширения) повышается располагаемая работа продуктов сгорания, истекающих в выпускную систему в период свободного выпуска; уменьшение отношения хода поршня к диаметру цилиндра позволяет наращивать проходное сечение клапанов и каналов.

Повышение же *r*/*l* при прочих равных условиях увеличивает пиковые скорости и ускорения поршня, что должно приводить к передаче большей работы насосных ходов волновому процессу в ГВТ.

Параметры оптимальных профилей впускного и выпускного канала приведены в табл. 1.

i	0	1	2	3
$\overline{L}_{{\scriptscriptstyle\rm B\Pi}i}$	0	3,253	3,868	11,060
$\overline{d}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$	0,3950	0,4009	0,4539	0,9792
$\overline{L}_{\text{вып}i}$	0	4,478	15,465	17,410
$\overline{d}_{\text{вып }i}$	0,3230	0,3690	0,4164	0,5458

Профили впускного и выпускного каналов

Оптимальные фазы газообмена приведены в табл. 2.

Таблица 2

Таблица 1

Фазы газообмена (в угла ПКВ)

$\phi_{\rm BII o}$	$\Delta\phi_{\rm BH}$	$\phi_{\rm вып o}$	$\Delta \phi_{\rm BBHT}$
276,25	360,00	115,75	387,25

Соответствующие оптимальному решению расчетные зависимости для давлений в цилиндре, перед впускными и за выпускными клапанами показаны на рис. 5. Там же показаны законы открытия клапанов.

Рис. 5. Расчетные кривые давления в трех точках ГВТ и законы открытия клапанов по углу ПКВ

Как можно видеть из рис. 5, для найденного оптимального по наполнению ГВТ перекрытие клапанов получилось весьма существенным.

ЗАКЛЮЧЕНИЕ

В работе получено решение задачи из области теории газообмена ДВС. Теоретически (численным расчетом по модели квазиодномерной газовой динамики) оценено предельно достижимое значение коэффициента наполнения четырехтактного ДВС с индивидуальными («настроенными») каналами: $\eta_{Vmax} = 1,426$. Определены соответствующие условия – приведенные обороты вала двигателя, профили впускного и выпускного каналов.

Результаты обработаны в безразмерных переменных и могут служить рекомендациями по выбору частоты вращения, профилей каналов и фаз газораспределения реальных форсированных ДВС с идентичным по структуре газовоздушным трактом и различными диаметрами цилиндра.

Полученные результаты имеют теоретическое значение. Для практики же проектирования и доводки двигателей, в которых используются нестационарные газодинамические эффекты, будут полезны примененные в работе программные инструменты и методика (технология).

Опыт практических расчетов процессов в ДВС с интенсивными волновыми явлениями в газовоздушном тракте показывает важность решения обратных задач в применяемой методологии. Модель процессов в газовоздушном тракте ДВС, как правило, только после соответствующей верификации (подтверждения удовлетворительной достоверности получаемых результатов и универсальности модели) может быть применена как инструмент проектировочного расчета.

Как идентификации, так и оптимизация – многопараметрические «обратные» задачи, решение которых при проведении расчетных работ должно быть автоматизировано.

СПИСОК ЛИТЕРАТУРЫ

1. Рудой Б. П. Теория газообмена ДВС: учеб. пособие. Уфа: УАИ, 1978. 110 с.

2. Еникеев Р. Д., Черноусов А. А. Проектирование и реализации пакета прикладных программ для анализа и синтеза сложных технических объектов // Вестник УГАТУ, Уфа, 2012. Т. 16, №4 (49).

3. Еникеев Р. Д. Свид. 2011619399. Программный комплекс для численного моделирования сложных технических объектов ALLBEA / Р. Д. Еникеев, А. А. Черноусов, С. А. Загайко, Ю. Р. Вахитов, А. О. Борисов. М.: Роспатент, 2011.

4. **Черноусов А. А.** Свид. 2010613235. Программа для численного моделирования процессов в газовоздушных трактах двигателей внутреннего сгорания Horsepower Lab 1D – М.: Роспатент, 2010.

5. Рудой Б. П., Черноусов А. А. Определение коэффициентов гидравлических потерь в вычислительном эксперименте // Актуальные проблемы авиадвигателестроения: межвуз. научн. сб-к. Уфа: УГАТУ, 1998. С. 189–197.

ОБ АВТОРЕ

Черноусов Андрей Александрович, доц. каф. двигателей внутреннего сгорания. Дипл. инж.-мех. (УГАТУ, 1994). Канд. техн. наук по тепловым двигателям (УГАТУ, 1998). Иссл. в обл. численного моделирования газообмена и систем имитационного моделирования ДВС.