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Abstract. Many Embedded Systems are indeed Software Based Control Systems, that is control systems 
whose controller consists of control software running on a microcontroller device. This motivates investiga-
tion on Formal Model Based Design approaches for automatic synthesis of embedded systems control soft-
ware. This paper addresses control software synthesis for discrete time nonlinear hybrid systems. We present 
a methodology to over approximate the dynamics of a discrete time nonlinear hybrid system   by means of 
a discrete time linear hybrid system   , in such a way that controllers for    are guaranteed to be control-
lers for  . We present experimental results on control software synthesis for the inverted pendulum, a chal-
lenging and meaningful control problem. 
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1. INTRODUCTION 

Many Embedded Systems are indeed Software 

Based Control Systems (SBCSs). An SBCS consists 

of two main subsystems: the controller and the 

plant, that together form a closed loop system. Typ-

ically, the plant is a physical system whereas the 

controller consists of control software running on a 

microcontroller. Software generation from models 

and formal specifications forms the core of Model 

Based Design of embedded software. This approach 

is particularly interesting for SBCSs since in such a 

case system level specifications are much easier to 

define than the control software behavior itself. 

Traditionally, the control software is designed 

using a separation-of-concerns approach. That is, 

Control Engineering techniques are used to design 

functional specifications (control law) from the 

closed loop system level specifications, whereas 

Software Engineering techniques are used to design 

control software implementing functional specifica-

tions. Such a separation-of-concerns approach has 

several drawbacks. For example, correctness of the 

control software is not formally verified and issues 

concerning non-functional requirements (such as 

computational resources, control software Worst 

Case Execution Time, WCET), are considered very 

late in the SBCS design activity and this could lead 

to new iterations of the control design (e.g., if the 

WCET is greater than the sampling time). 

The previous considerations motivate research 

on methods and tools focusing on control software 

synthesis. The objective is that from the plant mod-

el, from formal specifications for the closed loop 

system behavior and from Implementation Specifi-

cations (that is, number of bits used in the quantiza-

tion process) such methods can generate correct-by-

construction control software satisfying the given 

specifications. 

The tool QKS [1] has been designed following 

an SBCS model based design approach. Given a 

plant modeled as a Discrete Time Linear Hybrid 

System (DTLHS) QKS automatically synthesises 

control software meeting given safety and liveness 

closed loop specifications. The dynamics of a 

DTLHS is modeled as a set of linear constraints 

over a set of continuous as well as discrete varia-

bles describing system state, system inputs and dis-

turbances. Although the control software synthesis 

problem for DTLHSs is undecidable [3], the semi-

algorithm implemented in QKS usually succeeds in 

generating control software. 

However, the dynamics of many interesting hy-

brid systems cannot be directly modeled by linear 

constraints. This motivates the focus of the present 

paper: control software synthesis for nonlinear Dis-

crete Time Hybrid Systems (DTHS). 

The present paper is a survey on the on-going 

research on Model Based Control Software Synthe-

sis. More technical details can be found in [1–5]. 

We present a general approach to overapproximate 

(that is possibly allowing more behaviours than) a 
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given DTHS   by means of a DTLHS    such 

that controllers for    are guaranteed to be control-

lers for  . Control software for   is thus obtained 

by giving as input to the tool QKS [1] the linear 

plant model   . We show the effectiveness of our 

approach by presenting experimental results on the 

inverted pendulum benchmark, a challenging and 

well studied example in control synthesis. 

2. BACKGROUND 

2.1. Predicates 

An expression      over a set of variables   is 

an expression of the form              , where 

      are possibly non linear functions and    are 

rational constants. For example, 

       
 

 
             are expressions over      . 

     is a linear expression if it is a linear combina-

tion of variables           , i.e. for all  ,       

   for some     . A constraint is an expression of 

the form       , where   is a rational constant. 

A predicate is a logical combination of constraints. 

A conjunctive predicate is a conjunction of con-

straints. We also write        for         , 

       for (      )   (      ), and 

      for              . Given a con-

straint      and a boolean variable    , the 

guarded constraint        (if   then     ) de-

notes the predicate           . Similarly, 

       denotes           . A guarded 

predicate is a conjunction of either constraints or 

guarded constraints. A guarded predicate is linear if 

it contains only linear expressions. 

2.2. Control Problem for a Labeled 

Transition System 

A Labeled Transition System (LTS) is a tuple 

          where   is a (possibly infinite) set of 

states,   is a (possibly infinite) set of actions, and  : 

              is the transition relation of  . Let 

    and    . The set          
                      is the set of actions admis-

sible in  , and                               
is the set of next states from   via  . A run or path 

for an LTS   is a sequence 

                      of states    and actions 

   such that                   . The length     
of a finite run   is the number of actions in  . We 

denote with         the      -th state element of 

 , and with         the      -th action element 

of  . That is           , and           . Given 

two LTSs             and            , we 

say that    overapproximates    (notation      ) 

when            implies            for all        

and    . Note that   defines a partial order over 

LTSs. 

A controller restricts the dynamics of an LTS 

so that all states in a given initial region will even-

tually reach a given goal region. In what follows, 

let           be an LTS,       be, respective-

ly, the initial and goal regions of   A controller for 

  is a function         such that     , 

    , if        then              . The set 

                       is the set of states 

for which at least a control action is enabled. The 

closed loop system      is the LTS           , 

where                                . We call 

a path   fullpath if either it is infinite or its last 

state           has no successors. 

We denote with           the set of fullpaths 

starting in state   with action  . Given a path   in 

 , we define          as follows. If there exists 

    s. t.          , then          

                       . Otherwise, 

           . We require     since our sys-

tems are non-terminating and each controllable 

state (including a goal state) must have a path of 

positive length to a goal state. Taking         

the worst case distance of a state   from the goal 

region   is                           
                     . A control problem for 

  is a triple          . A solution to   is a con-

troller   for   such that            and for all 

         ,             is finite. An optimal 

solution to   is a solution    to  , s.t. for all solu-

tions   to  , for all      we have 

                        . 

3. Discrete Time Hybrid Systems 

Definition 1. A Discrete Time Hybrid System is 

a tuple             where: 

        is a finite sequence of real (  ) 

and discrete (  ) present state variables. The se-

quence    of next state variables is obtained by 

decorating with   all variables in  . 

        is a finite sequence of input vari-

ables. 

        is a finite sequence of auxiliary 

variables. 

            is a guarded predicate over 

         defining the transition relation of 

the system. 

A Discrete Time Linear Hybrid System 

(DTLHS) is a DTHS whose transition relation   is 

linear. 

The semantics of a DTHS   is given in terms 

of the labeled transition system        



 
Spec ia l  i s s ue :  IT I DS+ MAAO '2013  

 
40 

           where:               is a 

function s.t.                              . 

We say that DTHS    overapproximates 

DTHS    when                . 

Example 1. Let us consider a simple inverted 

pendulum. The system is modeled by taking the 

angle   and the angular velocity    as state varia-

bles. The input of the system is the torquing force 

 , that can influence the velocity in both directions. 

Moreover, the behaviour of the system depends on 

the pendulum mass  , the length of the pendulum   
and the gravitational acceleration  . Given such 

parameters, the motion of the system is described 

by the differential equation:    
 

 
     

 

   
  . 

In order to obtain a state space representation, 

we consider the following normalized system, 

where    is the angle   and    is the angular speed 

  . 

                     
 

 
      

 

   
                   

The DTHS model   for the pendulum is the 

tuple          , where           is the set of 

continuous state variables,       is the set of 

input variables, and    . Differently from [5], 

we consider the problem of finding a discrete con-

troller, whose decisions may be “apply the force 

clockwise” (   ), “apply the force counter-

clockwise” (    ), or “do nothing” (   ). The 

intensity of the force will be given as a constant  . 

Finally, the discrete time transition relation   is 

obtained from the equations in Eq. 1. as the Euler 

approximation with sampling time  , i.e. the predi-

cate    
             

      
 

 
      

 
 

   
   . 

3.1. Quantized Control Problem for 

DTHSs 

A DTHS control problem         is defined 

as the LTS control problem            . To 

manage real variables, in classical control theory 

the concept of quantization is introduced (Quanti-

zation is the process of approximating a continuous 

interval by a set of integer values. A quantization 

function   for a real interval         is a non-

decreasing function          s. t.      is a 

bounded integer interval. We extend quantizations 

to integer intervals, by stipulating that in such a 

case the quantization function is the identity func-

tion. Given a DTHS             , a quantiza-

tion   is a set of quantization functions       
      . If            is a list of varia-

bles and                 , we write      for 

the tuple     
         

     . 

Definition 2. Let             be a DTHS, 

  be a quantization for   and           be a 

DTHS control problem. A   Quantized Feedback 

Control (QFC) solution to   is a solution        

to   s.t. there exists                  s. t. 

                    . 

4. LINEAR OVERAPPROXIMATION OF 

DTHSS 

The tool QKS [1], given a DTLHS control 

problem           and a quantization schema 

as input, yields as output control software imple-

menting an optimal quantized controller for  , 

whenever a sufficient condition holds. In this sec-

tion we show how a DTHS   can be 

overapproximated by a DTLHS   , in such a way 

that               . Corollary 1 ensures that 

controllers for    are guaranteed to be controllers 

for  . 

4.1. DTHS Linearization 

Let     , with           , be a con-

straint in   that contains a nonlinear function as a 

subterm. Then      has the shape        
      , where      is a set of   real variables 

         , and      is a set of discrete varia-

bles. For each     , we define the function 

      obtained from  , by instantiating discrete 

variables with  , i.e             . Then      

is equivalent to the predicate             

       . In order to make the overapproximation 

tighter, we partition the domain    of each func-

tion       into   hyperintervals         , where 

       
    

       . In the following      will de-

note the conjunctive predicate     
 

           
 . 

Let     
     and     

     be over- and under- 

linear approximations of       over the 

hyperinterval   , i.e. such that      implies 

    
               

     (in [4] we show the 

systematic approach for finding such approxima-

tions for    functions using Taylor theorem). Tak-

ing         fresh continuous variables   

                
 and         fresh boolean vari-

ables                   
, we define the guarded 

predicate          : 
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.  

This transformation eliminates a nonlinear 

subexpression of a constraint      and yields a 

constraint           such that                 
     . Given a DTHS            , without 

loss of generality, we may suppose that the transi-

tion relation   is a conjunction 

                  of constraints. By applying 

the above transformation to each nonlinear 

subexpression occurring in  , we obtain a conjunc-

tion of linear constraints                       , 

such that     . Hence starting from a DTHS  , 

we find DTLHS               , whose dynam-

ics overapproximates the dynamics  of  .  

Theorem 1. Let             be a DTHS 

and    be its linearization. Then we have 

              . 

Theorem 2. Let             and    
         be two LTSs and let   be a solution to the 

LTS Control Problem         . If       and for 

all                          then   is also 

solution to the LTS Control Problem         .  

Corollary 1. Let             be a DTHS 

and    be its linearization. Let   be a solution to 

the DTLHS Control Problem         . Then   is 

a solution to the DTHS Control Problem        . 

5. EXPERIMENTAL RESULTS 

We present experimental results obtained by 

using QKS [1] on the inverted pendulum example 

described in Ex. 1. In all our experiments as in we 

set     and   
 

  
. We set the force intensity 

parameter      . 

We use uniform quantization functions dividing 

the domain of each state variable    
 

             (we write   for a rational approxima-

tion of it) and    
        into    equal inter-

vals, where   is the number of bits used by AD 

conversion. Since we have two quantized variables, 

each one with   bits, the number of quantized states 

is exactly    . In the following, we sometimes 

make explicit the dependence on   by writing     . 

The typical goal for the inverted pendulum is to 

turn the pendulum steady to the upright position, 

starting from any possible initial position, within a 

given speed interval. In our experiments, the goal 

region is defined by the predicate          
                 , where             , 
and the initial region is defined by the predicate 

                         ). 

 

 

Fig. 1. Trajectories:         and          

All experiments have been carried out on an In-

tel(R) Xeon(R) CPU @ 2.27GHz, with 23GiB of 

RAM, Debian GNU/Linux 6.0.3 (squeeze). 

We run QKS for different values of the remain-

ing parameters, i.e.   (goal tolerance) and   (num-

ber of bits of AD). In the Tab. 1. each row corre-

sponds to a QKS run, columns  ,  ,   show the 

corresponding inverted pendulum parameters, col-

umn     shows the size of the obtained control 

software, columns CPU and MEM show the com-

putation time (in seconds) and RAM usage (in KiB) 

needed by QKS to synthesize controller. Fig.1. 

shows the simulations of          and         . As 

we can see       drives the system to the goal with 

a smarter trajectory with one swing only. 

Table 1. Experimental results for inverted pendulum 

          CPU MEM 

8 0.1 0.1 2.73e+04 2.56e+03 7.72e+04 

9 0.1 0.1 5.94e+04 1.13e+04 1.10e+05 

10 0.1 0.1 1.27e+05 5.39e+04 1.97e+05 

11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05 

6. CONCLUSIONS 

We presented an automatic methodology to 

synthesize control software for nonlinear DTHS. 

The control software is correct-by-construction 

with respect to both System Level Formal Specifi-

cations of the closed loop system and Implementa-

tion Specifications, namely the quantization sche-

ma. The present work can be extended in several 

directions. First of all, it would be interesting to 

consider control synthesis of controllers that are 

optimal with respect to a cost function given as in-

put of the control problem, rather than simply time-

optimal. Second, it would be interesting to extend 

our approach to CTL specifications, rather than just 

liveness and safety properties. Finally, a natural 

possible future research direction is to investigate 
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DTHS control software synthesis when the state is 

not fully observable. 
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