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Abstract. The article considers the optimization problem of vehicle routing with three-dimensional loading 
constraints. Several practical loading constraints encountered in freight transportation are formalized. The ef-
ficiency of using the set-partitioning approach to improve heuristic solution is shown by means of computa-
tional experiment. 

Keywords: vehicle routing, three-dimensional loading, heuristics, set-partitioning.  
 

 

1. INTRODUCTION 

Freight transportation planning is an integral 

part of the logistic complex of manufacturing and 

trade enterprises. The article considers planning of 

the delivery of goods in containers (boxes) from the 

warehouse of the small-scale wholesale trade enter-

prise to the number of clients. This delivery process 

is the final link in the supply chain. Our objective is 

to find a transportation plan of the lowest cost 

which takes into account various technological con-

straints on goods loading in vehicles.  

Having a limited number of vehicles, the com-

plexity of the delivery planning stage is explained 

by the fact that there may be no obvious feasible 

transportation options meeting all clients’ demands. 

Not only the search for the optimal delivery plan, 

but even finding any feasible ones to have a base 

for decision making may become a difficult prob-

lem. 

In practice, the delivery planning is often car-

ried out manually by experts who assign vehicles 

for delivering goods to the stable “zones” of cus-

tomers’ location. The main indicators here are cost 

of product per 1 km, minimal cost of product 

shipped by a single vehicle and others. However 

such indicators do not ensure feasibility of the de-

livery plan and do not evaluate efficiency of trans-

portation for the whole enterprise rather then for a 

single vehicle. That is why delivery planning re-

quires development of specialized systems that 

make use of optimization tools. 

2. FREIGHT DELIVERY PLANNING AS 

OPTIMIZATION PROBLEM 

There are three main modules of production de-

livery planning: vehicle selection, routing, and 

loading scheme construction. Having a common 

goal – overall transportation costs minimization – 

these modules require taking into account various 

technological constraints, such as the listed below. 

Vehicle selection: 

 Lifting capacity; 

 Volume of the cargo hold; 

 Number of the vehicles available; 

 Fixed hiring cost;  

 Cost per 1 km or 1 hour etc. 

Routing: 

 Maximum length of the route (duration of 

transportation);   

 Maximum number of customers per route etc.  

Vehicle loading scheme construction: 

 Orientation of the loaded items;  

 Fragility of the items;  

 Stability of placement;  

 Loading/unloading sequence etc. 

During the delivery planning these modules 

should be considered as a whole because of their 

multilateral relationship. For instance, it may be 

possible to load some subset of items corresponding 

to some route in one vehicle and impossible to load 

it in another vehicle with smaller capacity (so the 

feasibility of a route depends on the vehicle selec-
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tion). In turn, loading scheme should take into ac-

count the specified route since when visiting certain 

customer, the items ordered by this customer 

should be available for unloading and not be 

blocked by the items ordered by the following cus-

tomers. If some vehicle is selected then there may 

exist a feasible loading scheme for one sequence of 

customers visiting and no feasible schemes for an-

other sequence, even more preferable by the travel-

ling distance criteria (so the feasibility of loading 

scheme depends on the route). 

The wide class of vehicle routing problems 

(VRP) includes a variety of models that take into 

account various conditions motivated by the real 

practice. All these problems have the same goal: to 

construct the minimum cost set of routes for the 

vehicles delivering goods ordered by a number of 

customers. 

In transportation process much attention should 

be paid to the efficient utilization of vehicle space. 

If the cargo hold has a form of parallelepiped and 

the goods are stored in relatively small containers 

or boxes then the problem of effective utilization of 

vehicle space may be reduced to constructing a 

scheme of orthogonal placement of the items inside 

the vehicle, i.e. to the three-dimensional bin pack-

ing or container loading problem. 

The most full picture of the situation is given 

by the vehicle routing problem with three-

dimensional loading constraints (3L-CVRP). It 

combines the capacitated vehicle routing problem 

(CVRP) and the three-dimensional bin packing 

problem (3DBPP). 3L-CVRP was first formulated 

by Gendreau et al. [1] and requires defining a min-

imum cost set of routes for the fleet of identical 

vehicles to deliver production in boxes or contain-

ers to a set of customers. Each route should be pro-

vided with a feasible scheme of items loading in the 

vehicle. An example of 3L-CVRP solution is 

shown in Fig. 1. 

 

 

Fig. 1. Example of the 3L-CVRP 

The computational complexity of the 3L-CVRP 

is extremely high, significantly exceeding the com-

plexity of NP-hard 3DBPP and CVRP. Thus, 3L-

CVRP is one of the most challenging combinatorial 

optimization problems. 

3. PROBLEM DESCRIPTION 

The problem is considered in the following 

formulation. 

Let ),( EVG   be an undirected graph with set 

of vertices },...,1,0{ nV  , where vertex 0 represents 

the depot (warehouse) and vertices 1,…,n represent 

the customers; and set of edges },:],{[ VjijiE  ; 

ijc  denotes the distance between vertices i and j. At 

the disposal of the company there are T identical 

vehicles having lifting capacity M, length of the 

cargo hold L, width W, height H, and the fixed hir-

ing cost C. Each customer i (i=1,…,n) orders a set 

of iq  items (rectangular boxes). Each item k 

),...,1( iqk   has its length i
kl , width i

kw , height i
kh , 

weight i
km , fragility mark }1,0{i

kf  (if 1i
kf  then 

the item is fragile), and the set of allowable orienta-

tions ],...,[ 6,1,
i
k

i
k

i
k rrr  , where }1,0{, i

jkr  denotes the 

allowance of placing item k of customer i in orien-

tation j=1,…,6 (there are six possible orientations 

ensuring the orthogonality of loading, with the 

sides of the items parallel to the sides of the vehi-

cle). 

The objective is to find a set of delivery routes 

with the minimum overall cost comprising the fixed 

hiring costs and costs depending on the distance 

traveled. Each single-vehicle route should be start-

ed and finished at the depot; the number of vehicles 

used should not exceed T. All the items ordered by 

the single customer should be delivered by the sin-

gle vehicle (order splitting is not allowed). Total 

weight of the goods carried by the single vehicle 

should not exceed the lifting capacity. For each ve-

hicle the items loading scheme should be deter-

mined. 

Let us consider the route 

)0,,...,,...,,0( 1 Qi pppR   }),...,1{( npi   passing 

through Q customers. The following constraints 

determine the feasibility of the loading scheme for 

the vehicle along this route: 

 each item is in allowable orientation;  

 items do not overlap with each other and with 

the sides of the vehicle; 

 the bottom side of the non-fragile item has no 

direct contact with the upper sides of the fragile 

items;  

 the loading of the items is stable; 

 at each point of the route the items ordered by 

corresponding customer are accessible for un-
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loading and there is no need to move the items 

ordered by other customers (LIFO policy). 

The scheme of items loading in the vehicle is 

denoted by  ),,,,,( iiiiii p
k

p
k

p
k

p
k

p
k

p
k zyx  , Qi ,...,1 , 

ip
qk ,...,1 , where ip

q  is the number of items or-

dered by the customer ip , iii p
k

p
k

p
k zyx ,,  are the co-

ordinates of further bottom left corner of the item k, 

and iii p

k

p

k

p

k  ,,  are the lengths of projections of 

this item on the coordinate axis defining the orien-

tation of the item. The route is feasible if it satisfies 

all the following constraints:  
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Constraint (1) ensures that the total weight of 

items loaded does not exceed the lifting capacity of 

the vehicle; (2) guarantees the feasibility of each 

items’ orientation; (3) prohibits to place items out-

side the vehicle. Constraint (4) ensures compliance 

of three restrictions for each pair of items: overlap-

ping prohibition, LIFO policy, and the fragility re-

striction. Finally, (5) is responsible for the stability 

of the items loading: if the item is placed not over 

the bottom of the vehicle but on the tops of the oth-

er items than the projection of the center of gravity 

of the item on a plane parallel to the vehicle bottom 

must be in a convex hull of area S which is defined 

by the union of the intersections of projections of 

the lower “supporting” items on this plane. Fig.2 

depicts an example of checking whether placing 

item k on the items t1 and t2 is stable. The projection 

of the center of gravity of the item k belongs to the 

convex hull of supporting area S (encircled by a 

dotted line), thus placing is stable. 

 

 

Fig. 2. Checking the stability of items 

placement 

Assume there is a set of feasible routes  , Rc  

is the cost of route R  defined by its length . 

The parameter }1,0{iRa  equals 1 if route R  in-

cludes customer i (i=1,…,n) and 0 otherwise. Vari-

able R  equals 1 if route R  is included into a set of 

routes representing the current solution of the prob-

lem. Then 3L-CVRP is formulated as follows: 

),,...,1(1 nia

R

RiR 


    (6) 

,




R

R T      (7) 

),(}1,0{  RR     (8) 

.min)( 
R

RR Cc     (9) 

According to (6), each customer is visited along 

a single route, (7) establishes the number of routes 

not exceeding the number of available vehicles T, 

(8) ensures variables R  to be binary, objective 

function (9) minimizes overall cost of transporta-

tion.  
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4. APPROACHES FOR THE 3L-CVRP 

SOLUTION 

To solve the 3L-CVRP, a number of approach-

es was proposed including tabu search in several 

variants [1–4] and ant colony optimization [5]. We 

should note that the authors listed above solved 3L-

CVRP in a formulation slightly different from that 

presented in this article:  

 a fixed set of orientations was considered to be 

feasible for all items (boxes can be rotated b  

    on the width-length plane but cannot be 

turned over); 

 the stability of placement was evaluated sup-

posing the supporting area (area where the bot-

tom of upper item touches the tops of support-

ing items) to be not less then 75 % of the upper 

items’ bottom area;  

 objective function did not include the fixed hir-

ing costs that depend only on the number of ve-

hicles used and do not depend on the travelled 

distance.  

For solving the 3L-CVRP we proposed a heu-

ristic method of three-phase decomposition [6]. The 

method was named after “two-phase decomposi-

tion”, a heuristic method of solving classical CVRP 

that has two main procedures: partitioning of the 

customers set into single-vehicle-served zones 

(clusters) and routing on each zone [7]. The third 

procedure of the three-phase decomposition is 

search for a feasible vehicle loading scheme ac-

cording to given route. For that purpose we use a 

multi-method algorithm 3D-MMA [8] embedded 

into one-point evolutionary algorithm (1+1)-

MMEA. Thus, there are three main procedures: 

zoning, routing, and loading.  

In this paper we propose to supplement the 3L-

CVRP solving by the procedure of solution im-

provement. Procedure consists in defining an opti-

mal (regarding to (9)) subset of routes given a set of 

feasible routes found during the problem solution 

by any method. The issue is that any heuristic 

method somehow looks over various routes, defin-

ing if they are feasible, and selects some subset of 

feasible routes to be the final problem solution. 

However, in the set of feasible routes there can be a 

subset of the least cost, where the routes have been 

found at different moments of solution process and 

have not been included into the final heuristic solu-

tion. To define this subset we have to solve a prob-

lem of optimal set-partitioning, diving a set of cli-

ents into the single-vehicle routes on the base of 

feasible routes set.  

It should be noticed that generally the set-

partitioning formulation of the routing problems is 

considered to be impractical. Nevertheless, due to 

the large number of constraints, this approach is 

useful for the 3L-CVRP because the number of fea-

sible routes is not as large as in most other routing 

problems. 

Moreover, the problems of low dimensionality 

(defined primarily by the number of clients and the 

number of items in each order) may be solved using 

a set-partitioning approach on the extended set of 

feasible routes constructed by the exhaustive 

search. It is necessary to enumerate all possible 

subsets of customers having total items weight not 

exceeding the lifting capacity of the vehicle and 

total items volume not exceeding the cargo hold 

volume. For each of these subsets a travelling 

salesman problem should be solved to find the 

shortest route with the feasible loading scheme.  

For the problems of higher dimensionality con-

structing an extended set of feasible routes requires 

huge computational resources so the feasible routes 

set may be obtained during heuristic solution (for 

example, using three-phase decomposition meth-

od). To solve the 3L-CVRP in formulation (6)–(9) 

having a feasible routes set we implement a simple 

algorithm by [9] that uses a search tree.  

5. COMPUTATIONAL EXPERIMENT 

The efficiency of using an optimal customer-

set-partitioning algorithm having a set of feasible 

routes obtained during solution of 3L-CVRP by 

three-phase decomposition method is confirmed by 

the computational experiment. We used the in-

stances proposed by Gendreau et al. [1]. Each in-

stance in a formulation described in chapter 3 was 

being solved by three-phase decomposition method 

within one minute with the following parameters: 

 not more than 10 shortest routes on one zone 

checked for loading feasibility;  

 not more than 1000 iterations of (1+1)-MMEA 

during the feasible loading search.  

The solution obtained was fixed. Then on the 

base of the feasible routes set obtained we imple-

mented an optimal set-partitioning algorithm and 

evaluated the gap from heuristic solution. The re-

sults are shown in Table 1. 

Improvement of heuristic solution was obtained 

on 12 instances of 25 after using of set-partitioning 

procedure. In some cases the improvement is quite 

significant (up to 9 %). This result assures the effi-

ciency of implementing a set-partitioning procedure 

given a set of feasible routes obtained heuristically. 
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Table 1.  Results of computational experiment 

No. 

Number of 

clients; items; 

vehicles avail-

able 

Overall routes cost 

Gap, 

% 
Three-phase 

decomposition 

only 

After set-

partitioning 

1 15; 32; 5 302,0 301,7 -0,1 

2 15; 26; 5 335,0 335,0 0 

3 20; 37; 5 387,4 387,4 0 

4 20; 36; 6 440,7 440,7 0 

5 21; 45; 7 535,5 535,5 0 

6 21; 40; 6 498,3 498,3 0 

7 22; 46; 6 788,4 788,4 0 

8 22; 43; 8 826,4 812,8 -1,65 

9 25; 50; 8 665,4 665,4 0 

10 29; 62; 10 955,4 868,6 -9,09 

11 29; 58; 9 841,3 828,3 -1,55 

12 30; 63; 9 625,1 619,9 -0,83 

13 32; 61; 9 2895,7 2878,0 -0,61 

14 32; 72; 11 1545,0 1502,0 -2,78 

15 32; 68; 10 1468,0 1416,6 -3,5 

16 35; 63; 11 706,2 698,6 -1,07 

17 40; 79; 14 916,4 904,8 -1,27 

18 44; 94; 14 1243,6 1243,6 0 

19 50; 99; 13 914,2 862,9 -5,61 

20 71; 147; 20 769,3 769,3 0 

21 75; 155; 18 1300,9 1300,9 0 

22 75; 146; 19 1439,7 1439,7 0 

23 75; 150; 18 1290,1 1290,1 0 

24 75; 143; 18 1336,8 1266,5 -5,26 

25 100; 193; 24 1684,7 1684,7 0 

Average 988,5 974,4 -1,33 

6. CONCLUSION 

In this paper the following main results are in-

troduced: 

 a detailed description of the 3L-CVRP with the 

formalization of technical constraints; 

 a new formulation of the stability constraint 

based on the center of gravity of each item; 

 a procedure of heuristic solution improvement 

using the set partitioning algorithm with the ex-

perimental rationale. 
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