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Abstract. There can be uncertainty in initial data which is commonly interval. There are considered two kinds
of optimization problems: interval linear programming (ILP), finding equilibrium position for interval von
Neumann's model (bilinear problem). Definitions of different types of solutions and methods for finding the-
se solutions are given. These methods imply reducing interval optimization problems to exact (ordinary) line-

ar programming problems.
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1. INTRODUCTION

Methods for solving linear programming (LP)
problems were greatly developed in the 20th centu-
ry due to the development of mathematical theory
together with hardware and software [1]. But in fact
optimal plans obtained from LP were often ineffec-
tive, not applicable. There were different factors
that could lead to this ineffectiveness. One of them
was inexactness of initial data [2].

For real-world linear economic models, numer-
ical values of input matrices items are obtained us-
ing statistical data and expert estimates, therefore
there can be an uncertainty, which is commonly
interval. Using of average values may cause inef-
fectiveness of optimal solution, because uncertainty
wasn't taken into account properly. Another ap-
proach is stochastic linear programming. This
method requires that probability distributions for
initial data are known while in practice this re-
guirement does not hold in most cases.

.2. INTERVAL LINEAR PROGRAMMING
PROBLEM

Let A be interval matrix with size nxm
A=[AAl=[A. —A A, +A],

where A and A are point matrices of interval low-

er and upper bounds of matrix A; A isa point ma-
trix,
A=A jlis@my, j=@my» Qi 20

A. is matrix of interval centers A [4],

A.=(A+A)/2.
Let us introduce interval vectors
b=[b;b]=[b, -&;b. +5] with size nx1 and

c=[c;c] =[c. —7;Cc + 7] With size mx1.

Hereinafter, parameters of productivity are
meant by equilibrium position if it is not deamned
exactly.

Vector xe R™ is a weak solution of system of
interval linear equations

Ax=Db,
if it satisfies Ax=b forsome AcA and beb.

Oettli-Prager Theorem. Vector xeR™ is a
weak solution of system Ax=b if and only if it
satisfies

|Acx—be|<A|x|+65.

Checking weak solvability of linear interval
equations system is NP-hard.

System of interval linear equations is strongly
solvable if any system of point linear equations
Ax=b (AeA, beb) is solvable. Checking strong
solvability of linear interval equations system is
NP-hard.

Vector xe R™ is a strong solution of system of
interval linear equations if x satisfies Ax=b for
any AcA and beb.

Theorem [2]. Vector xeR™ is a strong solu-
tion of system Ax=b if and only if x satisfies both
inequalities:

A.x=b,
Alx]=6=0.



80 Special issue: ITIDS+MAAO'2013

Existence of strong solution is a rare case.

Vector xeR™ is a weak solution of interval
linear inequalities system

Ax<b

if x satisfies the system of point linear inequalities
Ax<b for some AcA and beb.

Gerlach Theorem [2]. Vector xeR™ is a
weak solution of system Ax<b if and only if x
satisfies

Acx—A|x|£5.

Vector xe R™ is a strong solution of interval
linear inequalities system if x satisfies the system
of point linear inequalities Ax<b for any Ae A
and beb.

System of interval linear equalities is strongly
solvable if any system Ax<b is solvable for any
matrices AcA and beb.

It is proved [2] that if this system has feasible
solution (x*,x?) then vector

XZX:I'—X2

isa weak solution.
Checking strong solvability of linear interval
inequalities system has polynomial complexity.

ILP problem is a family of point linear program-
ming problems (LP problems)

min{ch|Ax:b,x20}
for AcA, beb and cec.

Let f(Ab,c) be optimal solution of point LP
problem with matrices (A,b,c).

Let

f(Ab,c)=inff(Abc)|AcAbeb cec}
be lower bound of optimum for ILP problem.

Let

f(Ab,c)=sup{f (Ab,c)|AcA beb,cec}
be upper bound of optimum for ILP problem.

Note that these bounds for optimum can be in-
finite.

Let us consider supplementary problem for up-
per bound using duality.

?(Ab,c) =sup{(b." p+5T|p||ACp—AT|p|§6}.
Let nx1 vector y satisfy
y=sgnp,
i.e.y; ={13}, i=12...n.

So there are 2" combinations for vector vy, the
set of these combinations can be denoted Y". If
vector y is fixed then we can solve LP subproblem
for @

o(y) =max{(b.' p+5" (y' p)|Acp-AT (y' p) <c}.

Value ¢(y) can be infinite. After using all

combinations for vector y, we can calculate upper
bound

@(Ab,c)=sup{p(y) |y eY"}.
To find lower bound of optimum the following
problem should be solved

f(Ab,c)=minfc" x| Ax<b, Ax>Db, x>0}

This problem is a point LP problem which can
be solved for polynomial time.

Problems for ¢ and f can be split into series of

subproblems, which can be solved using parallel
computations with little exchange between proc-
esses.

Theorem [2]. For ILP problem he following
statements are equivalent:

o for any matrices AcA, beb, cec LP prob-
lem

max{ch| Ax=b, x>0}
has optimal solution;

e  both lower bound and upper bound of optimum
are finite;

e both lower bound and supplementary problem
for upper bound are finite;

e system

—T
{A p-ATpy<c, p.p220; p,peR"}
is feasible and value @(A,b,c) is finite.

The range of optimum is [f(A,b,c);@(A,b,c)]

in every case.

The first step requires solving the only LP
problem that is why it has polynomial complexity
[2].

The second step requires solving of 2" LP
problems therefore it has exponential complexity
(in the worst case).

Today LP problems can be effectively solved
using parallel computations and exact rational-
fractional calculations [3]. It is evident that each
subproblem can be solved separately. So ILP prob-
lem has rather great potential for parallelism alt-
hough coarse-grained parallelism is often used for
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each LP subproblem. CUDA C software engineer-
ing is suggested by author for parallel calculations.
Another approach to solve ILP problem is interval
simplex-method [4]. The idea is to use rules of in-
terval arithmetics to calculate elements of simplex-
table. But this method has a lot of restrictions and
disadvantages, so it is rather controversial.

3. EQUILIBRIUM POSITION OF
INTERVAL VON NEUMANN'S MODEL

A general equilibrium position for von Neu-
mann's model (A B), where A and B are given

nxm input and output matrices with numerical
nonnegative items,

aij’bij 20, i:mv J:m’

is defined as a solution (4, x, w) of the system of
bilinear inequalities and equations

(A-2B)x<0, (x,e™) =1, x>0, (1)

(A-2B)w>0, (we")=1, w=0, 2

where
el er! el =1, i=(@1).

A non-degenerate equilibrium position in the
model under examination is an equilibrium position
(1, x,w) satisfying the additional condition

w' Ax > 0.
The extreme feasible values of 1 can be found
by solving the bilinear optimization problems

A =min{l|(A-B)x <0, (x,e™) =1, x>0}; (3)
A =max{1|(A-B) w>0, (w,e") =1 w>0}. (4)

The numbers 4, and A* are called von Neu-
mann and Frobenius numbers of the model (A,B)
respectively. The von Neumann number £, deter-

mines the maximum possible balanced growth rate,
while the Frobenius number 2* determines the
minimum possible balanced growth rate and the
workability of the model [7].

Vectors x, w of equilibrium position (2,x,w)
are called primal and dual von Neumann's rays cor-
responding the value of 1.

An isolated pair for von Neumann's model is a
pair of arbitrary subsets

Scl2,...m
and
Tc<12,...n,

for whichif jeS and i¢T then
aij :bij =0.

If there is no isolated pair in von Neumann's
model then the von Neumann's number and the
Frobenius number coincide [7].

Thus finding parameters of productivity (the
Frobenius number 1~*) and stable equilibrium posi-
tion for von Neumann's model lies in solving the
following bilinear programming problem

(ﬂ*,x*,w*):arg max A
(4, x,w)T eD(A,B)
(A-B)x <0,
(A-2B) w>0, )
(x,e™ =1, (w,e")=1,
A2>20,x>0,w>0.

D(AB) =

Hereinafter, parameters of productivity are
meant by equilibrium position if it is not defined
exactly.

Numerical methods of solving this problem (5)
are discussed in [82]. They are based on finding the
roots of the monotone functions

m
u(2)=__ min max 3 (aj —Aby)xj,  (6)
x:(x,eM)=Lx>0 i=12,..n j=1

V(1) = max min i(aij _/lbij )Wi . (7)

wi(w,eM)=1,x>0 j=L2,..m j=1

When 4 is fixed then the values of functions

U(4) and V(1) equal to optimal values of mutually
dual linear programming problems

minfu: (A-AB)x <u, (x,e™) =1, x>0}
and

max{v: (A—iB)Tw<v, (we") =1 w> 0}

When 4 is close to the roots of Y4) V(4) =0
problems (6) and (7) become degenerate because of
appearance of zero basic variables u and v in opti-
mal basis solution of this problems. That is why
problems (6) and (7) cannot be solved with conven-
tional means based on floating-point arithmetic.

Let us introduce interval von Neumann’s model

by interval matrices of input A ={[a; ,a_ij]} and out-

put B={Tb;,b;T}, i=@n), j=@m) [82, 6], which

have matrices of centers
A.=(A+A)/2, B.=(B+B)/2.

The proves of theorems presented below are
given in [8].
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Theorem 1. Let triplet (1,x,w) be equilibrium
position for von Neumann’s model (A,E) , and tri-
plet (4,x,w) be equilibrium position for von Neu-
mann’s model (A,B); then the Frobenius number
. for any point von Neumann’s model (;&, I§): (
AcA, BeB) belongs to [1;4].

Strong solution (xs,ws) of interval model
(A,B) provides equilibrium position (Z,xs,ws) for
any exact (point) von Neumann's model (A B): (
AcA, BeB).

Weak solution for interval von Neumann's
model (A,B) is a pair of vectors (x',w’), under
which set of constraints
(;&—/1§)x'£ 0;

(A—ﬂf&)T w'>0;
(x,eM =1
(w,eM =1
x,w,1>0

is feasible for any exact von Neumann's model
(AB): (AcA, BeB).
Theorem 2. If set of constraints
(A-AB)X"<0;
(A-2B)"w'>0;
(x"e™ =1
(Wu,en) :1,
xX"w' >0

is feasible under pair of vectors (x",w") then
(x",w") is a weak solution of interval von Neu-
mann's model (A,B).

Theorem 3. Let (x',w') be a weak solution for
interval von Neumann's model (A,B). If exact von

Neumann's model (A,B): (AcA, BeB)has
A'=max{A|(A-B)x'<0; (A—iB)" w> 0}
then A'e[4y,4], where 4, is the von Neumann's
number for model (A,B).
Theorem 4. Let (x,w’) be primal and dual

Frobenius vectors for exact von Neumann’s models
(A,B) and (A B), where

éij _éij =Aaij >0, 6“ —6” :Abij >0.

Let the Frobenius number for model (A B) is
equal to 1, and model (A B) has the Frobenius
number A, Al=1-A1. Let model (A B) has non-
degenerate equilibrium position (1, x",w"). Then

g ()T (Aa-28p)X"
W)T (B+Ag)X"

4. CONCLUSION

The main approach described is usage of lower
and upper bounds to find different types of solu-
tions. These solutions can be obtained from by
solving series of exact LP problems by using paral-
lel computations. It was shown that bilinear prob-
lem of finding equilibrium position for interval von
Neumann's model can be treated similarly.
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