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Abstract. This paper presents a new approach to the estimation of the irregularity of planar rectangular
structures. The method is based on the colour mixing principle. Although the developed method can be ap-
plied to structures filled with any shapes of objects, in this work we consider structures tiled with polyomi-
noes. Some analysis is shown that demonstrates efficiency of the method.
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The bin packing problem has evolved from a
purely theoretical curiosity into application oriented
research activities during tens of years of studies.
The problem is flexible in its formulation and there-
fore has many different variations according to the
application scenarios. It has one-, two-, three- and
multidimensional versions. Another two important
characteristics of the problem are shapes of the ob-
jects to be placed and shape of the container.

One important branch of the bin packing prob-
lem is packing polyomino-shaped objects into a
two-dimensional rectangular area [1]. Application
fields begin with solving the Tetris puzzles and
come up to freight placement and electronics de-
sign. There can be several shapes of polyominoes
that may be rotated. Often the shapes can be even
flipped producing eight different orientations of a
single polyomino.

Recently the studies of irregular subarraying of
large planar phased antenna arrays began [2]. The
reason for using irregular subarrays is to suppress
the sidelobe level in the radiation pattern of an ar-
ray by breaking the periodicity of the structure. In
other words, subarrays of irregular shapes are sup-
posed to provide highly irregular structures of the
antenna arrays. Since all the elements in antenna
array are equal it is logical to use the polyomino-
shaped subarrays [3].

Each particular structure of an antenna array
produces unique radiation pattern. Research activi-
ties on the optimization of the structures have been
carried out in the past few years [4]. Those activi-
ties use genetic algorithm as the optimization tool.
The sidelobe level is simulated by the software.
Due to big number of simulations needed and long

time that it takes to simulate one structure it would
be useful to eliminate the simulation of sidelobe
level and focus instead on obtaining a highly ir-
regular structure.

In this work we present one approach to esti-
mate the irregularity of structures tiled with
polyominoes. This approach has been implemented
and corresponding results are provided.

MATHEMATICAL FORMULATION

For obvious reasons it is impossible to run
hardware experiments during the optimization of an
antenna array. There are software libraries for nu-
merical simulations of the sidelobe level. Depend-
ing on the sizes of the array and accuracy the simu-
lation may take from half a second up to several
minutes. This time multiplied by the number of it-
erations of the genetic algorithm and population
size grows to hours spent on one experiment. In
order to solve this problem a task was set to find
another optimization criterion that could replace the
sidelobe level and be quicker to calculate.

In works of Mailloux [2] it is stated that the
sidelobe suppression is proportional to the irregu-
larity of the array structure tiled with subarrays.
Therefore, we should search for a criterion that
could estimate the irregularity of a structure.

Irregularity of a structure tiled with polyomi-
noes may mean that it does not have patterns re-
peated with some spatial periodicity. At the same
time a pattern can be represented by a single
polyomino as well as a group of two, three or more.
So, it is important to consider uniform distribution
of not only all eight orientations of the polyomino,
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but also groups of such polyominoes. For this pur-
pose it was proposed to use the principle of colour
filtering. Its essence is in the following.

According to the RGB model, all the colours
can be obtained by mixing three basic colours: red,
green and blue (Fig. 1). The basic colours are or-
thogonal to each other: they cannot be obtained by
mixing two other colours.

Fig. 1. RGB model:
three basic and three secondary colours

If we mix each pair of basic colours in equal
proportion we will get three secondary colours:

red + green = yellow;
red + blue = magenta;
green + blue = cyan.

In total we can use these six colours. We paint
polyominoes in the structure with these colours.
Each colour is associated with one orientation. In
Fig.2 a structure is shown where all the
polyominoes are painted in their colours.

Now let us describe colour channels. Colour
channels correspond to the basic colours of the
model. In RGB it is red, green and blue. They say a
colour is visible in a channel if the corresponding
basic colour is used to obtain it. Therefore, in the
red channel among our six colours we will see red,
yellow and magenta. In the green channel it is
green, yellow and cyan while in blue channel —
blue, cyan and magenta.

Now, if we “turn on” only one channel we will
see only those polyominoes in the structure that are
painted in the corresponding visible colours. Fig. 3
shows the initial structure in each of three channels.

But we ought to remember that every polyo-
mino in the structure has eight orientations, while
there are only six basic and secondary colours.
Black colour is used to designate invisible polyo-
minoes and holes that are invisible in any channel.
White colour is useless because it is visible in all
channels.

Fig. 2. Example of a structure in which
polyominoes are painted in colours according
to orientations

It is impossible to find four orthogonal colours.
But we can abstract our mind from colours and
transfer the same principle (mixing and elicitation)
to other objects. In this work the prime numbers
have been chosen as such objects. Four imaginary
colours act as basic: C,, C3, Cs u C;. They are or-
thogonal and they don't divide by one another.
Their multiplication will represent mixing. Since
the numbers are prime, every product will be di-
visible by only the numbers that represent basic
colours. In total there are six secondary colours:

C, +C3 =Cg;
Cy +C5 =Cyp;
Cy, +C; =Cyy;
C3+C5 =Cy5;
C3;+C; =Cyy;
Cs +C; =Cgs.

(1)

We will use only two basic colours (C, and C,)
and six secondary to paint eight orientations of
polyominoes.

Then we need somehow to estimate the uni-
formity of visible elements in the structure in each
channel. For that we calculate the number of visible
elements in all the rows and columns and their
standard deviation (separately among rows and col-
umns). The average value is set exactly to the num-
ber of elements in a row/column per one channel.
In channels C, and C; four colours are visible,
while in channels Cs and C; only three. Therefore
we divide the number of elements in a row/column
by 3.5 to obtain the average:
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Fig. 3. Views of the structure in red (a), green
(b) and blue (c) channels
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where o!, ¢~ — standard deviation of visible ele-
ments in a row and column in channel C, U{®) and

Vi©) — number of visible elements in the i-th row

or column in channel C, M and N — number of rows
and columns in the structure.

By this the information about the uniformity of
the elements distribution for each colour channel is
extracted. Then all the standard deviations are
summed up forming a numerical value of the irreg-
ularity of the structure R:

= cl c |.
R_%( + ) 4)

The optimization criterion in this case will be
positive minimization down to zero, meaning uni-
form distribution of visible elements among rows
and columns in all the channels and, therefore, ab-
sence of repeated patterns inside the structure.

EXAMPLES

Here we provide two examples of 32x32 struc-
tures tiled with polyominoes for which the value of
irregularity was calculated. The structures were ob-
tained by the Snowball algorithm [5]. It adds mar-
gins around the structure during its work and then
cuts them off. That is why polyominoes close to
borders are not complete. Time needed to obtain the
structures is depreciatingly little.

Example 1: L-trominoes

Input parameters:

e structure size: M=N=32;

e polyomino type: L-tromino.

Fig. 4 shows the structure. It is characterized by

a big number of small polyominoes and absence of
holes. Output data is presented in Table 1.

Table 1
Output of the first example
Parameter Value
Number of polyominoes 363
Number of holes 0
Fullness of the structure, % 100
Irregularity 346.36
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Fig. 4. Structure in the first example

Example 2: L-octominoes

Input parameters:

e structure size: M=N=32;

e polyomino type: L-octomino.

Fig. 5 shows the structure. Polyominoes of
larger size decreases the total number that can be

put into the structure but also leads to several holes.
Output data is presented in Table 2.

Table 2
Output of the second example
Parameter Value
Number of polyominoes 144
Number of holes 14
Fullness of the structure, % 98.63
Irregularity 370.54

L-shaped trominoes are the simplest irregular
polyominoes. In fact, they have only four orienta-
tions. Therefore, it is likely that there are going to
be repeated small groups of them over the structure.
L-shaped octominoes are free from this effect. They
have eight different orientations. This explains why
the irregularity of the second structure is higher
than of the first one.

CONCLUSION

In this paper presented a new approach to the
estimation of irregularity of planar rectangular
structures tiled with polyomino-shaped objects. The
proposed method is based on the principle of colour
mixing and elicitation in the colour channels. The
idea of using colours was taken because it is neces-
sary to check how uniformly distributed not only

Fig. 5. Structure in the second example

single polyominoes, but also groups of two, three
and more. For the reason that eight colours needed
and RGB model provides only six (three basic and
three secondary), a shift was done towards imagi-
nary colours represented by prime numbers. Having
four “channels” ten orthogonal “colours” have been
obtained.

This approach has been implemented into soft-
ware and run against several structures two of
which are presented here. Examples have proven
that the math behind the method provides reasona-
ble results. A 32x32 structure tiled with L-
octominoes has shown higher irregularity than the
one with L-trominoes.
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AHHOTaumA: JTa cTaTbaA NpeacTaBnseT coboi HOBbLIM NOAXOA, K
OLEHKE HEepPaBHOMEPHOCTM MAOCKMX  MPAMOYrO/IbHbIX
CTPYKTYp. MeTo4 OCHOBaH Ha MPUHUMNE CMELIEeHMA LBe-
TOB. XOTA pa3paboTaHHbI METOL MOKET 6bITb NPUMEHEH
K CTPYKTypam, 3ano/IHEHHbIM 0b6beKkTamu ntobolt dopmsl,
B 9TOM paboTe Mbl PaCCMOTPUM CTPYKTYpPbl, COCTaBNEHHbIE
u3 nonnmuHo. NpuseaeH aHanM3 pesynbTaToB, AEMOHCT-
pupyowmii 3¢pdeKTUBHOCTb MeToAa.
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HWe LBETOB; NI0CKUE CTPYKTYpbI.
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