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ABSTRACT 

Precision of positioning in GPS/GLONASS 

systems is getting better extending areas of applica-

tion of global positioning systems data. Improving 

of positioning accuracy based on enhanced mathe-

matical algorithms shown in our work [1]. It is get-

ting possible to control of motion of carrier. L.S. 

Pontryagin and coworkers developed effective in 

practical applications theory of control of dynamic 

motion [2]. Dynamic motions defined by the sys-

tem of equation are considering.  

   

  
                            ,   (1) 

where x
1
, …, x

n
 are the phase coordinates and ve-

locities of the managed object, u
1
, …, u

r
 are func-

tions managing turn wheel, brakes and accelerators 

forming the closed limited set U in the r-dimen-

sional space of object control, t is the time [3, 4]. 

Dynamic movement control problem is to se-

lection the motion control signals u
i  

= u
i
(t) for 

which the system (1) gives an unique solution x
i
 = 

xi(t), corresponding to the initial data xi(t0) = (x0)i, 

i = 1, ... , n, which satisfy to our predefined condi-

tion of motion. The integral feature usually deter-

mines optimality condition of motion 

                            
  
  

 , (2) 

which has the property of transitivity for autono-

mous systems. 

In the case where the optimality criterion is a 

requirement of minimal motion time between two 

given points, or closed region of the phase space of 

generalized coordinates and velocities of the man-

aged moving body, the problem of managing be-

comes a problem of performance according to 

L. S. Pontryagin. 

Performance problems are simplest because op-

timality function in this case becomes equal to one. 

These ones are well known and there are number of 

solutions for specific classes of movement manag-

ing problems [2]. L. S. Pontryagin and coworkers 

found partially continuous managing signals u(t) 

located on the border of the limited set of values U 

during all the time are satisfy to solution of perfor-

mance problems. Therefore, to fastest movement 

from one point of trajectory to another driver 

should speed up at one point and have to maximum 

push on the brake at another point. In many practi-

cal situations, that a strategy is a good choice, but 

every driver knows the driving rule: accelerates 

smoothly and brake smoothly. It satisfies to another 

optimality condition of motion. Each optimality 

condition defines the own class of optimal controls 

and optimal trajectories. In the area of intersection 

of classes of managed movement trajectories simul-

taneously satisfies two or more of the conditions of 

optimality. 

The simplest class of managed motion is a 

straight linear motion with constant velocity. Man-

aging signals are constant and equal to zero [5]. 

We choice an optimal motion with minimal in-

tegral curvature as a generalized straight linear mo-

tion 

             
    

  
    (3) 

or more common class – the motion with minimal 

torsion. Trajectories of performance with partially 

constant acceleration are given by quadratic splines. 

They cannot always approximate trajectory of per-



 
MATHE MATI CAL  MO DEL ING AND DECI SIO N- MAKI NG  32 

secution on a finite time interval, which have a 

smooth managing.  

The problem of motion managing for a mini-

mum curvature and torsion we call problem of per-

secution. 

Communication between GLONASS/GPS re-

ceiver with satellite system is carried out at an in-

terval t. However, persecution time may be both 

larger and smaller t. 

Determining of the persecution time is a very 

important problem both in theory of managing and 

in theory of persecution. If the time between com-

munication sessions is less than the persecution 

time t < , then each session gives final trajectory 

persecution correction, time of persecution and 

managing signals [6]. 

Anyway, final time of persecution satisfies to 

own optimal law of persecution xi(t), usually differ-

ent from the straight linear motion. 

We proffer classification of the available laws 

of persecution based on geometric and algebraic 

approaches.  

We can solve the generalized two point Cauchy 

problem for each class of trajectories and find con-

trol commands in each class of trajectories for the 

dynamic laws of persecution based on the selected 

class of the persecution. 

Finally, the computer subsystem initially se-

lects a class of trajectory then finds laws of dynam-

ic control and solves the persecution problem based 

on the relative positions and velocities of intercep-

tor and target.  

In the simplest case, when the target does not 

deviate from the predetermined path, the command 

of persecution control is equal to zero. If the target 

is retarding linearly, the persecution command for 

increasing of linear tangent velocity is run. There is 

a finite set of situations that require more complex 

trajectories of persecution, which are analyzed be-

low. 

THE GEOMETRICAL APPROACH 

1. CRITERIA OF OPTIMALITY 

AND EQUATION OF PERSECUTION 

Its known geometrical characteristics of trajec-

tory of movement includes unit vectors for accom-

panying orthoreper: 
   

  
   – unit vector of velocity 

tangent to the trajectory 
    

   
    , n – unit vector 

of normal to the trajectory,  – curvature of the tra-

jectory 
   

  
   

    

   
    , b – unit vector of 

binormal of the trajectory, s – length of the trajecto-

ry’s arc, – a natural parameter; σ2      
  

  
 

   

   
  

   

   
  – second curvature or twisting of 

the trajectory [3]. A straight line has zero curvature 

σ = 0 and as a result zero twisting σ2 =0. They 

forms the first geometrical class of trajectories 

widely using in dynamic games. The next class of 

trajectories are the zero torsion trajectories with 

smallest curvature. 

1.1. Plane motion with minimal integral cur-

vature. Let us require functional (3) on the optimal 

trajectories of persecution should be smallest with-

out using of dynamic equations of managed object 

(1). Using the time t as a parameter we have follow-

ing: 

                                                
                                                =0,  

(1.1.1) 

which means the linear dependence of the velocity 

vectors, acceleration and acceleration of accelera-

tion: 

      

     

     

     
      

     

     

     
      

     

     

     
  

(1.1.2) 

Equation (1.1.2) represents a general type of 

linear homogeneous differential equation of the 

second order relatively components of interceptor’s 

vector of velocity. This one has two fundamental 

solutions relatively vector of velocity leading to the 

plane motion. Indeed, the movement will be flat if 

the twisting of trajectory 

        
  

  
 

   

   
  

   

   
            (1.1.3) 

will be equal to zero in every point [3]. However, 

mixed multiplication of vectors in the right part of 

statement (1.1.3) becomes zero due to linear de-

pendency (1.1.2), as the determinant of a matrix 

with linearly dependent rows.  

In the particular case of a1(t) = 0 the order of 

equation is decreasing, trajectories becomes straight 

linear and under a(t) = 0 motion becomes inertial. 

Simplified variants of plane motion are discussed 

above. In the general case of plane motions we can 

consider a(t) = 1. We can consider a plane passing 

through the radius-vector connecting interceptor at 

initial time of persecution and the target at final 

time of persecution and vector of velocity of inter-

ceptor at initial time of persecution as a plane of 

persecution. Plane of persecution may change when 

adjusting the persecution. 

Arbitrary coefficients of equation connected to 

the control signals and have to be defined by meth-

ods of reversal problems of dynamics. Solutions 

founded of conjugated equations (1.1.1) or (1.1.2) 

with some control signals a1(t), a(t), b(t) we substi-

Q Q Q Q Q Q

Q Q

Q Q

Q Q
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tute into equation (1), from which we find the con-

trol signals uk(t) controlled dynamical system [7]. 

1.2. Movement with minimal integral tor-

sion. Planar motion of persecution is quite capable 

to solve the first problem of persecution and is not 

able to solve the second problem of persecution if 

the velocity vector at the time of completion of the 

persecution has a component orthogonal to the 

plane of the persecution. 

In this case, a wider class of trajectories, such 

as converging spiral or helix – trajectory with tor-

sion that goes out of the plane of persecution is 

needed. 

To do this, we can choose the limitation in form 

of the generalization of statement (1.1.1) or the 

generalization of equation (1.1.2). We may require 

the minimal of functional 

         
   

  
 
 
 

    

  
  .              (1.2.1) 

2 here is a second curvature of trajectory defined 

by formula (1.1.1) [3].  

Using the orthogonality properties of the unit 

vectors of the accompanying benchmark, we can 

cause the integral (1.2.2) to the form 

                                 (1.2.2) 

Variation of functional (1.2.3) leads to the 

complex nonlinear equation interesting in some 

cases 
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   – 
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 =0. 

(1.2.3) 

However, following a geometrical logic, as the 

conjugated dynamic equations we choose the gen-

eralized equation (1.1.3) of planar motion 

                                   ,   (1.2.4) 

which have three fundamental solutions. Two fun-

damental solutions gives a planar curative motion 

and the third fundamental solution may give a tor-

sion of trajectory [8]. 

2. CLASSES OF PLANAR 

TRAJECTORIES OF PERSECUTION 

2.1. Planar circular motion. The purpose of 

this and subsequent subsections is the solution of 

targeting problem at a particular class of trajecto-

ries. In case of constant speed planar motion the 

requirement of minimal integral curvature leads to 

the constant curvature round motion. This class of 

persecution is the second one after straight-line mo-

tion. 

Algorithm is following. For a given initial ve-

locity vector {Vx, Vy} find the line perpendicular to 

the initial velocity vector and passing through the 

initial point {X0, Y0}. For given initial {X0, Y0} and 

final {X1, Y1} points of trajectory of persecution 

define coordinates of the center of curvature of the 

trajectory {x, y} and the radius of curvature. 

  

 
   

          
    

          
  
 
   
    

  

                      
 

 
 ,  

    

 
     

      
    

                      
           

                       
   

   

  
                  

        
              

      
 

                       
 , 

          
  

  
 .              (2.1.1) 

Formula (2.1.1) solves the Cauchy problem and 

we can definitely determine the law of prosecution: 

            
  

 
   ,  

            
  

 
   ,  

z(t) = 0. 

The time of persecution   
  

    
        

      

       
 . 

Here X – vector from initial to final point of perse-

cution, V0 – vector of initial velocity. 

This class may occur circular trajectories with a 

constant centripetal acceleration, but with variable 

velocity and curvature when it is necessary to catch 

up with the target or close to it with a minimum 

speed.  

One of variant is R = Ku
2
 with constant К. 

The second variant is the twisting spiral. 

Initial spiral’s slope is defined by vector of ve-

locity at the start of persecution. Indeed let us sup-

pose 

a(t) = –2, b(t) = – 
2
–

2
  

and find the solution 

x(t) = aexp(–t)cos(t+), 

y(t) = aexp(-t)sin(t+),    

z(t) = 0.                                                     (2.1.2) 

Parameter of the low of persecution are defined 

from initial coordinates and velocities of the target 

and interceptor.  
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Note for simplicity we use a relativity principle 

and we suppose initial point is stationary at the 

origin. Parameters of the law of persecution are cal-

culated via relative initial coordinates and velocities 

     
    

  , 

  
            

  
    

  , 

   
           

  
    

  ,           (2.1.3) 

          
  

  
  . 

2.2. Planar trajectories with available man-

agement. It has known in the problems of perfor-

mance control signal take their boundary values 

from the area of management with an abrupt 

change [2]. Available control we understand as fi-

nite functions belong to the compact set of man-

agement U [2]. However, in contrast to the results 

of the theory of performance, our control signals 

are differentiable functions on the whole of set U. 

Equation (1.1.3) with substitution V(t)=(t)Z(t) 

allows transition to equation 

               ,           (2.2.1) 

where            
     

 
        and function 

      
       

 , which doesn’t consist the first de-

rivative. Among all kinds of functional dependen-

cies the managing signal a(t) in form 

      
  

    

 
               (2.2.2) 

is of particular interest, as it leads to expression 

            
  
  

    ,          (2.2.3) 

which represent the limited function if all ak are 

positive values. The numbers tk are the moments of 

time of shifting retarding to accelerating when zero-

ing relative velocity occur. These moments in time 

are the moments of finishing of persecution τ. To 

complain this condition the coefficients of accelera-

tion ak should be positive and possibly integer val-

ues. The equation (2.2.1) have a solution: 

         
       ,            (2.2.4) 

where function (t) is found as a solution of equa-

tion 

 

  
               .            (2.2.5) 

Now we can limit the force of equation (2.2.1). 

Note the scale factor "force" K
2
f(t) is transferred to 

the (t) and t: t1 = tK,    
 

 
, that don’t appear in 

the integral (2.2.4) . 

2.2.1 The first case. Let       . The cause 

by      
     

 
        .  For limb control sig-

nals and monotone subject that most closely ap-

proaching to Pontrjagin’s "relay" type control, put  

 
     

 
       

       

     
             

       

     
       

 In this case, we find that  

             ,   
                   ,  
       

 
                           

            
      

Or by beginning coordinates and velocity 

                        
 

 
  

      
 

 
            .                     (2.3.1) 

The time of persecution have evolved as 

  
 

  
            

            
                     ).  

(2.3.2) 

2.2.2 The second case. Let          At that 

cause we have  

      
            

   

   
   

    

   
 
        

 
      

  
    

   
 
        

 
 

.  

Unlike the first case, the relative velocity does 

not vanish while reaching the time of persecution τ 

but it becomes the maximum physical and technical 

conditions for all positive integers even n, except 

for n = 0. When n = 0, we have uniformly acceler-

ated motion with acceleration. 

   
   

    
      

     
    

   
    

 
,  

      
   

 
 , 

      
  

  

   
    

 
 ,  

                 . 

For arbitrary n > 0 motion, as the velocity in-

creases rapidly in the final stage of persecution. 

This situation can be compared with the slow per-

secution before the targeting in a straight line and 

then shooting a laser beam. This one has condition-

al practical application. 
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    .  

2.2.3. The third case. The control function b(t) 

such that the controlling force f (t), defined on a 

finite time interval τ is given by Legendre polyno-

mials 

      
 

     
 
  

   
         ,  

where  
 

 
 . Those complex movements can be use-

ful for the persecution of managed aircraft when an 

effort against the persecution takes place. In simple 

cases may be useful more simple management 

techniques, which are defined by special cases of 

solutions of equation (1.1.3). 

2.3. The differentiable case. Let us      
      , in equation (3), Then equation (1.1.3) re-

duces to  

                , 

where U(t) is a vector of velocity and Ω are integra-

tion constants. Let us denote 

              , 

then general type solution of the equation becames 

     

     

     
 

  
  
  

         

  
  
  

    
 .             (2.4.1) 

Existing of two vectors reduces this solution to 

the plane case. Solution (2.4.1) in the case of a con-

stant a(t), shows that vector of velocity shifts from 

one direction to another one exponentially under 

persecution. Without losing of significance, we can 

assign 

       , 

      
  

 
    

    , 

      
  

 
    

    , 

        . 

Parameters of the law of motion are express by 

coordinates and velocities of the initial an final 

points of persecution and time of persecution: 

          
       

 
        , 

          
       

 
        , 

   
             

                        
 , 

   
             

            
             

   

 
                                   

             
. 

   
                               

             
 + 

+ 
               

       
                   

             
   

(2.4.2) 

Time of persecution is estimated by formula: 

   
                       

             
 + 

+ 
                        

             
. 

We have more general case of solution of the 

equation (1.1.3). Let us transform the equation (3) 

to the form 

 

  
                                    

     
 

  
             . 

and require              should be constant. 

Then we have equation  

                       , 

and it’s solution under 

         , 

      

   
   

  
 
 

 
 
   

 
       

   

  
 
 

 
 
   

 
         

– is a more general type of planar motion. There M 

and U are special functions. 

3. PERSECUTION WITH TORSION 

3.1. Screwed spiral. The most important in the 

theory of the prosecution motion with torsion is a 

movement along a twisting of spiral. 

                           x0   
                        0   
            0   0 .                       (3.1.1) 

Parameters of the law of motion are found from 

initial and final points of the phase space as follow-

ing. Initially we have to find radii of curvature R in 

the iteration process, R initial value is 10. Then we 

have to fined Z parameter as approximately solution 

of equation  

  
                     

       
 .                      (3.1.2) 

Q Q Q Q QQ
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Then we substitute Z found into the equation 

for correction of : 

      
     
   

 – 

 
 

                          
 
  

             
    

                  
   

                       
   

   
          

    
          

Then we do correction     
 

    
 and hav-

ing a new value of Z we calculate a new correction 

to (3.1.3) formula 

    
       

  
 . 

Control signals are calculated by formulas: 

      
                 

           , 

      
              

           ,                       (3.1.4) 

     
           

           . 

Where the functions a(t) and b(t) tend to a fi-

nite limit, and c(t) – tends to zero. Omitting cum-

bersome calculations show dependence of the rate 

of persecution time (Fig. 1). 

We can see in this class of trajectories control 

signals are finite and vary only in the start of perse-

cution until by torsion do not go on the plane pros-

ecution (Fig. 2 and 3). 
 

 

 

Fig 1. Dependence of velocity 

of persecution on the time 

 

 

 

Fig. 2. Dependence of the torsion and curvature 

of the trajectory on the time of persecution: 

red line is torsion, green line is curvature 

 

 

Fig. 3. Dependence of controlling forces 

on time 

4. TRAJECTORIES OF PERSECUTION 

UNDER GLONASS CONTROL 

4.1. Slowly moving objects. We divide the 

problem into two classes of objects: slowly moving 

bodies and fast moving bodies to select of trajecto-

ries of persecution. In case of slowly moving bodies 

deviations between real positioning and compo-

nents of velocity vectors and their tabular values 

are small within GLONASS sessions receiving time 

Δt. Ships, cars, people, animals, birds etc. are slow-

ly moving bodies. In case of slowly moving bodies, 

we can choice the quadratic law of motion – motion 

with constant acceleration. In the next session of 

communication, the acceleration may be abruptly 

slightly changed depending on value and direction 

of deviations. Let us assign  

            
              

      
(4.1.1) 

For which equation we have   

     
 

 
   

     . 
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The law of motion (4.1.1) has nine arbitrary 

constants, which we have to determine based on 

initial values. Let us suppose coordinates, velocities 

and accelerations qx, qy, qz, Vx, Vy, Vz, ax, ay, az were 

calculated at the moment of previous session t1. 

             
 

 
    ,  

             
 

 
    ,  

             
 

 
    .                       (4.1.2) 

While in this interval of time, the body should 

move under the law 

              
 

 
     ,  

              
 

 
    ,  

              
 

 
    .               (4.1.3) 

According to condition of persecution under 

t=0, a0=qx, b0=qy, z0=qz. At the moment  accord-

ing to condition of persecution (1) and (2) we have 

equations: 

                         
  

                                                  
 

 
    

 

from which we find 

   
            

 
     

        
     

   
. (4.1.4) 

Analogous, 

   
            

 
  

   
             

   
  

     
            

 
  

      
        

     

  
 .            (4.1.5) 

Thus, using formulas (4.1.1) with coefficients 

(4.1.4) and (4.1.5) we can solve the problem of 

slowly moving bodies persecution. In this case, 

GPS/GLONASS receiver should accept current 

values of position, velocity and acceleration. 

4.2. Fast moving objects. In the case of fast 

moving objects defining of quadratic on time law of 

motion is not enough. We should take into consid-

eration variations of acceleration approximated by 

polynomials of third and fourth power. However in 

case of free of torsion planar trajectories we have 

relatively complicated third power polynomials an-

alytical expressions making solving of targeting 

problem too hard. Indeed, in case of free of torsion 

planar motion with minimal curvature we found 

               
     

  ,  
       

        
     

  , 

                      

                  ,     (4.1.5) 

where 

        

  
   

         
   

                 
   

  

    

  
    

           
       

   
           

  

    

  
 

  

 

 
 
 
 

    
   

      
        

     
                

    

       
          

      

    
              

      

    
     

      
     

  

      
   

               

 
 
 
 

      

  
 

  

       
         

   
   

    
   

               

          
     

     
   

       
        

   
     

     
   

        
       

    
   

       
   

     

           
       

       

           
        

           .        (4.1.6) 

W values are a functional dependencies, M val-

ues are numerical expressions of a[k], b[k] con-

stants. 

      
   

          
        

     

                                 

        
     

         
       

                           
   

   

    
   

      
             

           , 

            
     

 
  

 , 

            
 
  

 , 

                            , 
                   

   , 
                        , 
                   

   , 
                   

            . 

Integral parameter in formula (4.1.5) is specific 

for motion with variable acceleration. M1 value at 

denominator of formula becomes equal to zero un-

der zero values a3 and b3, which are responsible for 

variable acceleration. Solutions of the integral are 

elementary functions, thus we can find twelve con-

stants ak, bk using algebraic sums. The simplest ma-

neuver of acceleration allow perform transition 

from one predefined trajectory to another one with-

in a finite interval of time. In this case, both initial 

positions and velocities and final ones are coincide. 

Using these parameters, we can find these twelve 

} }
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constants of the law of motion with above-

mentioned formulas. The problem of management 

of fast moving objects using GPS/GLONASS is 

that positioning is performing based on quasi range 

from receiver to constellation within cone of visi-

bility limited by angle of 5–10 degrees above hori-

zon. Lower angle rays cause multipath interference, 

which decreases accuracy of positioning. 

However in case of fast moving objects the ac-

quiring of satellite signals will occur within the se-

quence of points Mi(x(ti), y(ti), z(ti)) not in the one 

point of trajectory. We find the coordinates and ve-

locities related to the last point along the path de-

fined by the law of persecution {x(t), y(t), z(t)}. We 

correct pseudo ranges of previous points with co-

sine theorem. Thus, we eliminate dilution of preci-

sion of positioning of fast moving objects, which 

may exceed hundreds of meters. In our previous 

work, we show more precise method of positioning 

using analytical approach [1]. The approach allow 

find more accurate trajectories of persecution be-

tween communication sessions. Thus, the problem 

becomes interconnected and under certain condi-

tions, to be special studies it is becomes convergent 

to the exact limit. 

5. ALGEBRAIC CLASSIFICATION OF 

TRAJECTORIES OF PERSECUTION 

Geometrical classification of trajectories of 

persecution is based on equations describing trajec-

tories of persecution as lines that bend elastic 

thread with appropriate boundary conditions. There 

is alternative. We can consider surfaces emerging 

under deformation of the elastic film and the con-

gruence of geodesic lines on curved surfaces such 

as the classes of trajectories persecution. In addi-

tion, as the world lines on these surfaces, which 

define the torsion of the Lorentz force. It is known 

that the equations of Einstein's gravity describe 

four-dimensional space-time continuum as pulsat-

ing elastic film in the space of higher dimension. 

Therefore, we consider the equation of motion in 

spaces of general relativity in the form of the Ham-

ilton-Jacobi equation, as a model equation. It is 

known algebraic classification of these equations 

based on the algebra of first integrals of motion. 

This method can be generalized for other Hamilto-

nian dynamical systems, specifically for the 

Pontryagin’s Hamilton in modern theory of man-

agement of dynamic motion. 

5.1. Classification of solutions of 

Hamilton-Jacobi equation  

Let us consider the Hamilton-Jacobi equation 

of test charged particle in general relativity theory 

as a model equation. The arbitrary gravity field in 

conjunction with electromagnetic field are able to 

form various combinations of curvature and torsion 

of tested charged particles trajectories. It is known 

the equation of Hamilton–Jacobi in general theory 

of relativity may be presented as following [4]. 

       
 

   
       

 

   
         ,      

            (5.1.1) 

where xi are generalized coordinates, gik(x) are met-

ric coefficients expressed as coordinate functions, S 

is function of action,      
 

   
          is gen-

eralized momentum, qAk(x) are charge and vector - 

potential of the electromagnetic field. It is known 

also first integrals a=a(x, p) of Hamilton’s system 

form the Lie algebra relatively Jacobi brackets.  

        
 

   
  

 

   
   

 

   
  

 

   
  .  

First integral commutator can be expressed lin-

early from integrals of algebra with structural con-

stants of algebra     
  which are anti symmetric on 

lower indexes and satisfy to the Jacobi identity.  

             
   

 
    ,  (5.1.2) 

                                        . 

(5.1.3) 

Hamiltonian 

           
 

   
       

 

   
       

satisfy to Jacobi brackets because it is integral of 

motion also. 

                   .  (5.1.4) 

Algorithm of composing of classes of trajecto-

ries is following. 

1. The system of homogeneous quadratic equa-

tions relatively unknown components of algebra 

(5.1.3) structural constants containing n linear first 

integrals of motion is solving. 

a = Ja(x)
i
pi, a = 1…n, i = 1…4, n = 1…10 . (5.1.5) 

Based on the found coefficients structural con-

stants     
  excepting isomorphic cases are compos-

ing.  

2. For each algebra defined by structural con-

stants     
  the system (5.1.2) is solving and first 

integrals         
    or Kiling’s vectors      

 , 

a = 1…n are fining. 

3. System of equations (2.1.4), which decom-

poses for linear integrals (2.1.5) into a system of 
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equations for the components of the Killing metric 

gik(x) is solving: 

                  ,  (5.1.6) 

where Di denotes the covariant derivative with re-

spect to the desired metric                  
  

and to the Kiling equation for the vector component 

of electromagnetic field: 

     
 
 

   
          

     

          
   

   
      

      (5.1.7) 

Solving systems of linear partial differential 

equations (5.1.6) and (5.1.7) we restore the power 

functions of the each algebraic class with more or 

less certainty, depending on the number of integrals 

of algebra n, and with them, and Hamiltonian. 

4. As a result, availability of composing of al-

gebraic classes of trajectories is getting possible. 

There are two approaches. The first one is a direct 

method. Coordinates on the deformed film, we 

transfer on locally planar space. Because analytical 

expression of the law of motion of a certain alge-

braic class is desirable. To find the law of motion 

we compose an equation of geodetic line – trajecto-

ry without torsion or we compose an equation of 

world line in present of electromagnetic field – tra-

jectory with torsion not transferring the body from 

surface of elastic space. In the second case, we 

solve the problem of embedding a deformed film in 

the planar space of higher dimension and define a 

class of trajectories in planar space. 

5. Thus, it is possible to solve the problem of 

persecution in this algebraic class of trajectories. To 

do this, we solve the Cauchy problem of the trans-

formed equation (5.1.8) at the start and final data of 

trajectory of persecution. A number of authors 

solved that hard problem. Levi–Chivita found struc-

tural constants of a three membered Lie algebra [5]. 

A. Z. Petrov and V. R. Caigorodov at Kazan Uni-

versity, Russia found all remaining algebraic struc-

tures with real structural constants until tenth order. 

These authors found canonic forms of Kiling vec-

tors respecting to linear first integrals and satisfying 

those metrics [6]. One of author of this researching 

found all electromagnetic fields on Kiling–Petrov–

Kaigorodov’s vectors [7]. For commutative alge-

bras of first integrals, the problem was solved for 

classical system by Jarov–Jarovoi and for general 

case of general relativity was solved by Jarov–

Jarovoi’s method [8]. 

Using Maple environment for computer aided 

mathematical simulation the solution of the prob-

lem is possible in general form during a short time 

not only in canonical Petrov–Kaigorodoc-

Zakharov’s form. Authors have a number of cases 

proving the method. Let us consider a case of filth 

order algebra. 

A metric tensor 

    

  
 
 
 

 
     

  
 

 
  
  
 

 
 
 
 

  

satisfy algebra of integrals 

          , 

      , 

      , 

      , 

            
     

 
   . 

Geodetic lines equations 

                 
 
              

                                   

          
     

 
 
 

 
                             

       

  

have solutions: 

1. Rectilinear uniform motion along the axis ox 

or axis oz;  

2. Uniform motion along the axis oy and uni-

formly accelerated motion along the axis oz;  

3. Uniform motion along the axis ox and oy, 

uniformly accelerated along the axis oz. 

4. The variant that met in Part 1: 

      
  
 

  
 
   

  
  

 
  
  

 
   

  
    

 
    , 

      
                 

     
      , 

       
                    

     
      . 

5.2 Algebraic classification of 

trajectories of persecution by Pontryagin 

It is known the Pontryagin’s theory of man-

agement motion is reduced to the Hamilton form 

[2]. 

                  
    

    .     (5.2.1) 
   

  
 

 

   
    

   

  
  

 

   
  .        (5.2.2) 

Moreover, generalized momentum i is a gra-

dient of some function of action, which leads to the 

form of the Hamiltonian system of Hamilton - Ja-

cobi equations [2]. Let us transfer the general rela-

tivity algorithm of algebraic classification of Ham-

ilton–Jacobi equations to the Hamiltonian system of 

Q Q
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controlled motion (5.2.1), (5.2.2). In case of planar 

motion, we have four-dimensional space of varia-

bles xi – two generalized coordinates and two gen-

eralized velocities. For this case, structural con-

stants of Lie algebra and respecting first integrals 

are transferring without changing from researching 

of Petrov and Caigorodov [4]. Kiling type equa-

tions for the Hamiltonian (5.2.1) of autonomous 

system with r-membered Lie algebra of first inte-

grals 

        
   ,  a = 1…r,  i = 1…n+1. 

can be presented as 

      
 
 

   
       

   

   

  
 

   
      

            

   

   

                   

   (5.2.3) 

Killing vectors belonging to the Lie algebra en-

sures consistency of the system (5.2.3) and the ex-

istence of solutions for the required power func-

tions        , which becomes functions of coordi-

nates of extended phase space [9]. This situation is 

typical for autonomous dynamical systems, when 

the control signals are not functions of time, and the 

functions of the coordinates, and they have entered 

the control forces implicitly [2]. We have to find 

the law of motion of managed object and control 

signals based on found power functions - right sides 

of equations (1). For movements in three-

dimensional configuration space, we have the six-

dimensional phase space and the seven-dimensional 

extended phase space. As far as authors know alge-

braic structure these spaces are not currently con-

structed. 

Let us consider for instance the planar motion 

in xoy plane. Let assign x=x1, y=x2,  
        

          

We will looking for power forces in form of 

                   

                          . 

Let us suppose that first killing integral 

                                        
          is known. Thus equation (5.2.3) gives 

equation        . And equations of persecution 

becomes equations of performance with trajectories 

      
                       

 
 , 

     
                       

 
 . 

                          ,  
                          , 

      . 

CONCLUSIONS 

1. Trajectories of persecution satisfying to the 

condition of minimal curvature and torsion may 

differ significantly from piecewise time-quadratic 

or time-cubic laws of performance.   

That may be a decisive factor for the solving of 

problems of persecution. Fig. 4 show above men-

tioned.  

 
a 

 
b 

Fig. 4. The trajectory of persecution as a line 

with minimal curve (a) and the trajectory 

of persecution as a cubic relationship (b), 

τ2 = 6,2033 

Initial data in cases of A and B are the same but 

the final conditions are differ significantly. Curves 

are coincide at the initial stage and are disperse out-

side curve of minimum curvature decomposition in 

power series of Taylor (Fig. 5). 

2. We do not need finding the quadratic laws of 

persecution motion at every small region of perse-

cution because computational load will increase 
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significantly and both calculation errors and itera-

tion errors will increase extensively. We can use a 

certain class of laws of motion at the finite trajecto-

ry of persecution within a finite time instead. Using 

this approach, we should do decomposition of tra-

jectories into classes. A geometrical approach con-

taining the set of simplest geometry trajectories 

could not give us comprehensive and invariant clas-

sification of trajectories of persecution. Algebraic 

classification is better for solving the problem of 

classification of trajectories. 

3. Uniformly accelerated law of motion is us-

ing in the theory of performance. Complex trajecto-

ry is approximating by splines with appropriate 

triggering of control signals. In the theory of perse-

cution a set of predefined trajectories is using. Each 

class of trajectories have own analytical expression 

and constants as equation parameters. The problem 

of targeting is solving separately for each class of 

equations. These solutions include time of persecu-

tion and numerical values of trajectory parameters 

allowing transition from initial point of phase space 

to the final one. The law of motion with certain 

numerical parameters allow find control signals as 

continuous functions of time. Algebraic classifica-

tion of trajectories of motion is very valuable be-

cause it is general and invariant. 
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