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Abstract. A problem for constructing the shortest cyclic route that ensures homogeneous cargo is delivered
from producers to consumers by a transport vehicle of limited capacity is considered. Formalizations in the
form of quadratic Boolean programming, linear integer and linear Boolean programming problems are given.
Comparative analysis of the efficiency of four exact algorithms is performed. The problem of finding the min-
imal admissible capacity of the transport vehicle is considered as an auxiliary problem. Dependence of the
length of the optimal route on the capacity of the transport vehicle is studied experimentally.
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We consider the following problem. A
transport vehicle is to deliver a homogeneous cargo
from producers to consumers via the cyclic route.
We assume that all destinations are numbered. We
use a' (i =1, ..., n) to designate both availability of
the cargo at the point of production and the demand
for it at the point of consumption — a; > 0 for the
production point and a; < 0 for the consumption
point. We assign the base, i.e., the point of origin
where the transport vehicle should return after it
delivers all the cargo, number 0, ag > 0. We assume

n
that D a, =0 (the cargo is balanced). Find the route

i=0
of minimal length. Problems of this type that were
later called Vehicle Routing Problems (VRPs) were
first stated in [1]. Note that for ag =n, a; =... a,= —
1, the stated problem is the travelling salesman
problem, which is NP-hard. This means the prob-
lem involved also belongs to this class. Note that
exact polynomial algorithms of solving NP-hard
problems have not been proved to exist to date (the
NP problem). For this reason, we restrict ourselves
to problems of small dimension (not more than 20
destinations). From the four algorithms involved,
we chose the most efficient in terms of the analysis
of the dependence of the value of the objective
function on the capacity of the transport vehicle. In
[2], several heuristic algorithms are given for the
stated problem. We consider the problem of finding
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the minimal admissible capacity of the transport
vehicle as an auxiliary problem.

Problem 1. Find S, i. e., the minimal admissible
capacity of the transport vehicle, if each destination
except for the base is to be visited only once.

The problem is formalized as follows. Suppose
X is the Boolean permutation matrix of dimension
(n+ 1) x (n+ 1): Xj = 1 if and only if the destina-
tion number j is the ith point visited in the cycle,
I,j =0, ...,n. Find Boolean variables Xj; such that

Zn“xij =1 (j=0,..,n) 1)
3 X, =1 (1=0,..01) )
X, =1 ©)
osiiajxij <S (k=0,..,n) (4)
S - min. ©)

(1)—(5) is the linear integer programming prob-
lem. The following proposition holds.

Proposition 1. Max|aj| < S < 2 max|a;|, and for
any € > 0 there exists the number n and the se-
quence ay, ..., @, such that S> (2 — €) max|aj| (this
is a stronger version of the results of [2]).

Proof. The lower bound is obvious. We use the
designations a” = (ja| + a)/2, a_ = (|a] — a)/2. If max
|a’| = max|a | i. e., the maximal cargo at the point of
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production equals the maximal demand at the point
of consumption, we can no longer consider them
since if we place them at two first places in the se-
guence, delivery from one point to another can be
done by the transport vehicle with the capacity
max|a;| < 2 max|a;|, and the transport vehicle is left
empty after that. Going on with it, we obtain a car-
go sequence such that max|a‘| # max|a|. We prove
that the transport vehicle of capacity
max|a’| + max|a | < 2 max|aj| is sufficient for such a
cargo sequence (we can consider that the maximum
in the right-hand side is taken over the elements of
the initial sequence). Indeed, at the first step, we
can load the transport vehicle with any positive
cargo. Suppose at some instant the load of the
transport vehicle is not greater than max |a’|. If
there are still points of production with the cargo
left in them, the remaining capacity is sufficient to
load any of these cargos. Otherwise, if the load of
the transport vehicle is greater than max |a’| the
transport vehicle has enough cargo to unload at any
consumption point. Thus, while there are still un-
processed points, the process can be continued,
which is what we wanted.

To prove the second proposition, for some
€>0, we consider the following sequence of
weights — (k + 1) cargos equal (+k) and k cargos
equal (—k-1). Obviously, S = 2k. The relation
2k / max{lail} = 2k/ (k + 1) > (2 — ¢) for a suffi-
ciently large k.

Note that the lower bound is attained for the se-
guence (1, 1,-2).

Problem 2. Boolean quadratic formalization.
We have the transport vehicle of the admissible
capacity S and the matrix C, of the distances be-
tween the points. Under the hypotheses of prob-
lem 1, we should arrange transportation so that the
route length is minimal.

Note that when the points are permutated ac-
cording to matrix X from problem 1, the matrix of
distances has the form Cyx = X C, X;. The subscript |
in the initial matrix C, indicates the unity matrix.
The problem can be formalized as follows. Find the
Boolean matrix X such that conditions (1)—(4) hold
and

LN

n—

(CX )i,i+l + (CX )n,O — min. (6)

1l
o

(1)—(4), (6) is the problem of Boolean quadratic
optimization. In the next section, we construct the
linear integer formalization of problem 2 with a
significantly increased dimension.

Problem 2. Linear integer formalization. One
knows a whole number of linear formalizations of

the travelling salesman problem (see [4] for re-
view). The modification of the technique proposed
in a number of works (for in-stance, in [3]) suits us
most of all.

We introduce Boolean variables Yj (i, j = O,
..., n) that equal 1 if and only if the j-th destination
is the next destination after the i-th one in the route
of the transport vehicle. The following conditions
are met:

Yy =1(=0....n) (7)

(the transport vehicle leaves each destination for the
only destination),

2 Y =1(j=0...n) ®

(the transport vehicle arrives in each destination
from the only destination),

Yoo=0 9)

(the transport vehicle leaves the zero destination for
some other destination; for other destinations, this
will follow from the subsequent restrictions).

We introduce integer variables v; (i=1, ..., n)
such that:

1<vi<n, (10)
Vi—vp)+nYi<n-1(,j=1,...,n). (1)

The following proposition holds.

Proposition 2. For any cycle satisfying the
problem’s hypothesis, there exists the solution of
system (7)—(11). Inversely, any solution of system
(7)—(11) gives the cycle that includes all destina-
tions. The variables v; has the sense of destination
numbers as they are visited in the chain that in-
cludes all destinations but for the base.

Proof. If we remove zero destination (the base)
from a cycle and give the variables v; the sense in-
dicated above, all conditions (7)—(11) will obvious-
ly hold.

Now suppose variables Y (i,j = 0, ..., n),
(i=1, ..., n) satisfy conditions (7)—(11). If Y; =0,
condition (11) is met for any values v; that satisfy
condition (10). We construct a directed graph, with
its vertices marked by the numbers 1, 2, ..., n, and
the presence of the arc (i, j) means Yj; = 1. It follows
from Y;; = 1 and condition (11) that v —v; < -1; i.e.,
there are no cycles in the constructed graph. It fol-
lows from condition (7) (or (8)) that (n + 1) varia-
bles Y; (i, j =0, ..., n) are 1, while it follows from
condition (9) that exactly (n — 1) variables Yj;
(i,j=0, ..., n) are 1. Thus, the respective undi-
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rected graph is a tree. It follows from conditions (7)
and (8) that each vertex of the graph has in-degree
and out-degree not greater than 1. Thus, the con-
structed graph is a simple chain. Since the number
of the values vi is the same as the number of verti-
ces in the graph and if there is the arc (i,j) by the
condition v; — v; < -1, different vertices are matched
to different values v;, v; — v; < -1 for the adjacent
vertices, which means that vi are indeed the num-
bers of vertices in the order of passing along the
chain. By condition (7), the cargo is delivered to the
destination that corresponds to the first vertex of
the chain from some place. It can be the base or the
destination that corresponds to the last vertex of the
constructed chain. However, the second case con-
tradicts condition (9) since in this case the only uni-
ty in the zero row should be at the zero place. A
similar case takes place for the last vertex of the
chain. Thus, we constructed the cycle of the re-
quired form.

We introduce the Boolean variables Z that are
1if and only if v <k (s, k =1, ..., n). The re-
strictions hold

Zg>(L+k—vy)l(2n) (s,k=1,...,n) (12)
(if the right-hand side is positive, then Zy = 1).

n n

D> Zy=n(n+1)/2. (13)

s=1 k=1

It follows from conditions (12) and (13) that
Zy =0 for vs > k.

The conditions of overload and nonnegativity
of the cargo weight in the transport vehicle when
each destination is visited have the form

0<a,+).Z4a,<S (k=1..,n). (14)
s=1
The objective function is

iiYijcij —min. (15)

We describe the variables of the stated prob-
lem: Y; are Boolean, their number is (n + 1)% Zy
are Boolean, their number is n% and v; are integer,
their number is n. The total number of restrictions
is of the order O(n?).

Problem 2. Linear Boolean formalization. Like
in [5] we introduce Boolean variables that equal 1
if and only if j-th destination is the next destination
after the i-th one in the step k of the route of the
transport vehicle. The following conditions are met:

n+l n

33Xk =1(j=1,..,n), (16)

k=1 i=0

n+l n
X{ =1(i=1..,n), (17)

k=1 j=0
S XE =1(k=1,..,n+1), (18)
i=0 j=0
> xpt=t, (19)
i=1

Xg, =1, (20)

k : k+1/ = .
X = Oijl(J:O,...,n,k:l,...,n). (21)
p=

M- I

]
o

Proposition 3. Any solution of system (16) —
(21) gives the cycle that includes all destinations
exactly once (Hamiltonian cycle).

Proof. Condition (20) means that there is exact-

ly one destination i, # 0, so Zx;h =1. And let's
j=1

create chain (0, iy, .., i) by induction, so

Xi;is =1(s=1..,k, k<n,i,=0). Condition (16)

and equality means that X, =1. Using that in the

-y - n k+l - -

condition (21) results in ZOXikp =1, i. e. there is
p=

exactly one destination i,+1 for which Xitiﬁl =1is

true. Check that iy +1 ¢ {is,...,ik}. If opposite is
true, then there is is (s < k + 1) for which X7, =1.
But this contradicts (16).

Using this we'll get chain (0, iy, ..., ix.1) Which
includes all destinations. Because of (17) and (19)
X5 =1. So, we have a cycle with right properties.

p n n
0<> > > Xia<S (p=1...n). (22)
k=1 j=0 -0
n+l n_ n
X;i¢; — min. (23)
k=1 j=0i=0

Problem (16)— (23) is linear Boolean problem
with (n+1)® variables. The total number of re-
strictions is of the order O(n?).

COMPUTATIONAL EXPERIMENT

(1) We performed comparative analysis of the
efficiency of using three algorithms to solve Prob-
lem 2

e Boolean quadratic (we used MATLAB with
the cplex extension);

e linear integer (we used MATLAB with the
cplex extension);

e linear Boolean (we used MATLAB with the
cplex extension);
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e branch and bound with the initial approxima-
tion constructed by the “first suitable” principle.
We randomly generated 100 examples for each
of the dimensions n =4, ..., 18. The Table 1 gives
the average number of iterations. The Table 2 gives
the average time.
Table 1
Average number of iterations it takes various
algorithms to solve the problem

. Branch .
0 iIaltzear Booleap and Linear
ger quadratic bound Boolean
4 137 15,8 14,3 1,24
5 1,4:10° 107 47,7 20,6
6 1,47-10* 841 199 54,2
7 2,66:10° | 7,46:10° 911 185
8 931-10° | 6,67-10 | 4,1810° 736
9 6,54-10° | 1,92:10* | 1,9810°
10 6,98:10° | 1,01-10° | 5,79-10°
11 4,63-10° | 1,19-10*
12 2,21-10° | 3,0810*
13 1,22:10" | 4,73-10*
14 1,11-10°
15 1,39-10°
16 2,67-10°
17 9,72-10°
18 1,03-10°
Table 2
Average time it takes various algorithms to solve the
problem
Linear Boolean Branch Linear
n integer, quadra- and Boolean,
sec tic, sec bound, sec
sec
4 0,0686 0,0463 0 0,0306
5 0,235 0,123 0,000156 | 0,0466
6 0,856 0,123 0,00140 0,0721
7 13,5 0,496 0,00764 0,151
8 616 3,88 0,0414 0,294
9 41,1 0,248 0,573
10 490 1,61 1,42
11 8,97 2,99
12 52,0 7,75
13 333 14,3
14 36,2
15 53,5
16 131
17 478
18 856

Minimum number of destinations for which at
least one example was not solved during 1 hour:

n=14 for branch and bound algorithm;

n=9 for linear integer programming;

n=20 for linear Boolean programming;

n=11 for Boolean quadratic programming.

Maximum number of destinations for which at
least one example was solved during 1 hour:

n=15 for branch and bound algorithm;

n=14 for linear integer programming;

n=28 for linear Boolean programming;

n=10 for Boolean quadratic programming.

For n > 13, the branch and bound algorithm is
almost inapplicable, with the linear Boolean algo-
rithm being the most efficient.

(2) We analyzed how the increased capacity of
the transport vehicle influences the route length,
.., the objective function. To solve Problem 1, we
used MATLAB with the cplex extension. Then, we
applied the linear Boolean algorithm to solve Prob-
lem 2 for the minimal capacity of the transport ve-
hicle, i. e., the solution to Problem 1, and for the
increased capacity of the transport vehicle, which
was 1.1; 1.2;...; and 2.5 times greater than the min-
imal one. We formed 100 examples for each of
4-12 destinations and averaged the lengths. Fig. 1
gives some results.

1 4
0,98 "‘ \\ 5
0,96 '—\‘

— ()
0,92 '—\— 7
0,9 T—N\° \ 8
0,88 $
9
0,86 \‘\‘\
> > 10
] N~ ——
08 o
0,82 - - 11
08 +—r+—T—7—7"—"T"—7"7T"T"7—"TTT7TT1
IS DI OO O (PN OO DN - = 12
\} Q \] Q Q \} Q Q
AN EEN \b Y ,»Q ,\:\, ,\,b(

Fig. 1. Length of the optimal route depending
on the growing capacity of the transport vehicle

The Tables 3 and 4 gives the average number of
iterations and average time for heuristics described
in [2].

There is two numbers in cells. First number in
cells is average number of cycle relative to optimal
one (accepted as 1). Second number is average time
it takes algorithm to solve the problem. Stopping
rule for random search algorithm: if after 20 n itera-
tions there was no improvement then algorithm is
stopped.
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Table 3
Average path length relative to optimal and average
time (seconds) it takes various algorithms
to solve the problem

%2} 2] 1 <

= = c O

[ = o o < @ pust

S < S5 =~ =~ o @ g

o L '08 BH BN 0 = [22]

n c o c < 2 S 2s | 2o =
m | o 5 5 = o

o a o ©)

4 1/ 1,02/ | 1,01/ | 1,01/ | 1,02/ | 1,05/
0,0306 | 0,0009 | 0,0006 | 0,0009 | 0,0009 | 0,0004
5 1/ 1,05/ | 1,03/ | 1,03/ | 1,05/ | 1,08/
0,0466 | 0,0007 | 0,0015 | 0,0013 | 0,001 | 0,0007
6 1/ 1,102/ | 1,07/ | 1,08/ | 1,08/ | 111/
0,0721 | 0,0015 | 0,0012 | 0,0018 | 0,0012 | 0,0012
7 |1/04151| 117/ | 112/ | 113/ | 1,09/ | 112/
0,0017 | 0,0018 | 0,0020 | 0,0014 | 0,0028
8 (1/0294| 1,24/ | 116/ | 1,17/ | 1,11/ | 1,14/
0,0024 | 0,0034 | 0,0037 | 0,0015 | 0,0012
9 |1/0573| 1,33/ | 117/ | 1,17/ | 1,12/ | 1,15/
0,0037 | 0,0069 | 0,0065 | 0,0048 | 0,0025
10 |1/1,42| 1,41/ | 126/ | 1,25/ | 1,14/ | 1,17/
0,0046 | 0,0199 | 0,0201 | 0,0138 | 0,0014
11 |1/2,99| 151/ | 1,27/ | 1,25/ | 1,13/ | 1,16/
0,0057 | 0,149 | 0,159 | 0,0483 | 0,0031
12 |1/7,75|1539/| 1,29/ | 1,29/ | 1,15/ | 1,19/
0,0043 | 0,504 | 0,517 | 0,111 | 0,0040
13 |1/143| 1,65/ | 1,29/ | 1,28/ | 1,16/ | 1,18/
0,0086 | 2,29 2,298 | 0,012 | 0,0059
14 |1/36,2| 1,71/ | 1,34/ | 1,32/ | 1,16/ | 1,17/
0,0070 | 16,3 17,3 | 0,0144 | 0,0052
15 |1/535| 1,78/ | 1,37/ | 1,35/ | 1,17/ | 1,19/
0,0079 | 393 43,1 3,61 | 0,0075
16 |1/131| 1,83/ | 1,37/ | 1,35/ | 1,17/ | 1,19/
0,0090 | 339 325 | 0,0228 | 0,0062

17 | 1/478 | 1,92/ - - 1,18/ | 1,21/
0,0091 781 0,0063
Table 4

Average number of iterations it takes various
algorithms to solve the problem

% _CCJ 2 ‘é 1 =

s 8| 8§_| &_| &g |8

Q @ c c N 7= 2
n m = Qo . 2 » o

5 |8 22| 22 | £ | 3

2 | 2| 5 5 =< | 2

-5 § o a o O
4 | 124 [133] 22,2 23,7 215 | 16
5 | 206 |184| 47,4 50,1 331 |25
6 | 54,2 [22,5| 101 102 515 | 36
7 | 185 [26,3| 184 171 73,9 | 49
8 | 736 [32,4| 451 309 122 | 64
9 1,98-10%38,8| 1,26:10° | 519 183 | 81
10 |5,79-10%39,2| 4,69-10° | 712 210 |100
11 |1,19-10%39,6| 3,58:10% | 1,15-10° | 290 |121
12 |3,08-10%46,7| 1,13:10° | 1,68-10° | 368 |144
13 [4,73-10%47,9| 4,75-10° | 2,44-10° | 415 |169
14 [1,11-10%54,7| 3,33-10° | 3,32:10°| 503 |196
15 [1,39:10%56,4| 8,07-10° | 4,61-10° | 748 |225
16 [2,67-10°58,7| 2,67-10" | 6,59-10° | 933 |256
17 9,72:10%64,7| — — 1,50-10° | 289

CONCLUSION

We considered some optimization problems of
transport logistics. We implemented alternative ap-
proaches to construct the exact solution of the prob-
lem of minimization of the cyclic route of cargo
delivery from producers to consumers. The compu-
tational experiments showed that:

o the most efficient way is to reduce the problem
to the model of linear Boolean programming;

e if the carrying capacity of the transport vehicle
is increased more than 1.6-1.7 times as com-
pared to the minimal admissible capacity, the
length of the route is not reduced on average;

e if the number of destinations is increased (until
n = 10), the growth of the carrying capacity of
the transport vehicle leads to a greater reduc-
tion of the length of the cycle;

e if number of destinations exceeds n = 10 then
the reduction of the length of the cycle is
stopped.

e Heuristics based on Prim's spanning tree algo-
rithm finds paths closest to the optimal ones.
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HbIM CPEACTBOM OrpaHuUuYeHHOW BmecTumocTu. Mpeacras-
neHbl popmanusaumm B BUAE 3a4a4 KBagpaTudHoro byne-
Ba, JIMHEMHOrO LEN0YMCNEHHOTO WU JIMHelHoro 6ynesa
NPOrpaMmMMpPOBaHUsA. BbINONHEH CPaBHWUTENbHbIA aHanu3
3G EKTUBHOCTU YeTbIpeX TOYHbIX anropuTMoB. JonoaHu-
Te/IbHO PAacCMOTPEHa 3a4a4a HaXOMKAEHUs MUHUMA/IbHOM
[0NYCTUMOI BMECTUMOCTM TPAHCMOPTHOrO CPeAcTBa. JKc-
NepuMeHTaNbHO HaleHa 3aBUCUMOCTb ANUHbBI ONTW-
ManbHOrO MaplipyTa OT BMECTUMOCTU TPAHCMOPTHOro
cpeacTsa.
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