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Abstract. We suggest a modified algorithm of modeling an equiprobably distributed system of discrete ran-
dom variables based on a non-equiprobably distributed system of discrete random variables with the same
set of possible values. The efficiency of modeling is estimated.
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In [1, 2] a method is suggested which solves the
problem of equiprobable generation of values for a
system of discrete random variables. The solution is
based on a non-equiprobable generator of another
system of discrete random variables with the same
set of possible values.

Namely, let X =(X,,..., X,) be a system of n

discrete random variables with a finite set of possi-
ble values x' =(x,...,x.),i=1..,N. Let the proba-

bility  distribution of the system  be
N
P(X=x)=p;,i=1.,N,> p =1.
i=1
Assume
p=min p, p =p+A,A20i=1.,N. Then, giv-

en the normalization

N
Z p =1
i=1
we have

N

> A =1-Np.

i=1

Consider a new system of discrete random vari-

ables Z =(z,,...,Z,) , whose values are generated by
the algorithm EQPR(Z).

Algorithm EQPR(Z)
1. Generate values for the system of random
variables X according to its probability distribution.
Let X =x' be the result of the step.

2. Generate values for an auxiliary system of
random variables Y, according to its probability

distribution P(Y, =0) :%, Py, =) =P,

3. IfY,=1,thenset Z=x'; else go to step 1 of
the algorithm.

The system Z is proved to be equiprobably dis-
tributed, i.e.

P(Z=x)=—,i=1..,N.

1
N’

The chosen measure of efficiency of EQPR(2)
is the expectation M[V] of the random variable V,
which is the number of iterations required to deliver
a realization of Z. It is proven that

M= (1)

From (1) it follows that if p is rather small then
delivering a realization of Z requires a lot of itera-
tions. In this case the method efficiency is low.
Therefore, increasing the efficiency of the suggest-
ed method of equiprobable generation is relevant.

In this paper we modify the described generator
for an equiprobably distributed system of discrete
random variables. We also show the modified algo-
rithm can be substantially more efficient than the
original EQPR(2).

PROBLEM
STATEMENT AND SOLUTION

Let X =(X,,..,X,) be the system of discrete
random variables defined above. Let A be a finite
set of possible values of X, |A|=N. Let a set of
equinumerous sets A, |A|=L= % ,k=1..,K be
a partition of A. Let pf,k=1..K,j=1..,L be a
probability of the j-th element of A . Assume

p“ = min pi. )

j=l..L



Let W* =W},..,W*) be a system of discrete
random variables with the set A of possible values
and their corresponding probabilities

P

L
PN
j=1

Consider a new system of discrete random vari-
ables U =(U,,...,U,) whose values are generated by

the algorithm EQPRM(U).

e K

Algorithm EQPRM(U)

Generate equiprobably a number k of a subset
of A.

Generate a realization w* of the system w*
applying EQPR(W*) to the system W*; note that
the realization w* coincides with a possible value
x' of the system X,w* =x'.

Assume U =w* =x'.

Obviously, the set of possible values of U is the
set A.

Proposition 1

The system of random variables U is distributed
equiprobably:

. 1 .
PU=x")=—,i=1..,N.
( ) N

Proof. Let x' € A“ and let «* be an event of se-
lecting number k on Step 1lof the algorithm
EQPRM(U) or, equally, selecting a subset A* to be
processed on the next step. Then

PU=x)=PU =x"/a")-P(c").

According to EQPRM(U) we have

. P@ :% by Step 1 of EQPRM(U):

. P(U:xi/ak):% by Step 2 of

EQPRM(U) taking into account W* and the result
of EQPRW*).
Therefore

PU=x")= i

1
LK N’

|—||—\
XIH

since L=~
K
The proposition is proved.
Assume V,, is the number of iterations required

to obtain a realization of the system U. Specifically,
V,, is the sum of the only iteration of Step 1 and all

the iterations of EQPR(W") on Step 2. Let the ex-
pectation M[V,, ] be a measure of efficiency of
EQPRM(U).

According to (1), the expectation of the number
of iterations of EQPRW*) is

1

k

L.—P
2P
j=1

Since it is the conditional expectation of the
number of iterations on Step 2 of EQPRM(U) under
the condition of equiprobable selection of A* on
Step 1, we obtain

K 1 1
M[\/M]:1+Z K T,
k:1L' p K
L
2P
j=1
N k N k
1 K lel 1 K lel
=14y =14 =) E
KL; p* Nkzz; p*

Therefore, the required measure of efficiency is

MV, 1= 1+—Z( Z} J (3)

Regarding the upper and the lower bounds of
M[V,,1 we claim that:

Proposition 2

1
ZSM[\/M]£1+N—p . (4)

Proof. Obviously,
MMV, 122, )

since we always have at least Stepl of EQPRM(U)
and at least one iteration on Step 2. The lower
bound (5) is attainable since as

pf =p* k=1..K, j=1..L wehave
K L
MV, 1= 1+— ikZpk=1+—KN"—1+%=2
k=1 j=1
1

Taking into account that — < o k=1..,K,we

can obtain the upper bound of M[v,, ] as follows.

L

1&(1 & 1 1&
IR Y E LR E ool
N | ) Pz

= N ~
1 o 1
:1+— pi = —_—,
N2 T
i. e
MV, <1+ —. ©6)
Np

Obviously, the upper bound (6) is attainable as
p¥=p, k=1..,K
Combining (5) and (6), we get (4).



Now compare M[V] and M[V,, 1, which are the

measures of efficiency of EQPR(V) and
EQPRM(U), respectively, for the same system X of
random variables. The minimum of M[V] is 1,

which is attainable, according to (1), as pzﬁ. It

follows that, obviously, since Step 1 of EQPRM(U)
is always executed, then M[V]< M|V,,] under “the

best” and “the worst” conditions. However, from
(1) and (3) we obtain the condition of EQPRM(U)
being preferable to EQPR(V) according to the de-
fined measure of efficiency: M[V,,]<M[V] if

Example

Assume N =1000, K =2, p=p' =0.0001,

500

500
p? =0.001, 21: P = 0.1,_21: p? =0.9.
1= 1=

Then, from (3) we get M[V,,1=2.9, from (1)
we get M[V]=10, i.e. here EQPRM is 3.5 times
more efficient than EQPR.

CONCLUSION

The suggested algorithm EQPRM can be sub-
stantially more efficient in practice than its prede-
cessor EQPR. It follows from the proof of the
Proposition 2 that, when partitioning a set A to
blocks containing nearly equiprobable elements, we
get the efficiency of EQPRM close to its lower
bound, which equals 2.
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AHHOTauma: [peanokeH MoOAUGULMPOBAHHLIN  anropuT™m
MOAENNPOBAHUA PABHOBEPOATHO pacnpeseneHHon cuc-
TeMbl OMCKPETHbIX CAyYalHbIX BEJANYMH, OCHOBAHHbIA Ha
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C/lyYalHbIX BEAMYMH C TaKUM Ke HabopoM BO3MOMKHbIX
3HayeHuin. OueHeHa 3GpPeKTUBHOCTb MOAENUPOBAHUA.
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