ISSN 1992-6502 (Print)
Vol. 18, no. 5 (66), pp. 68-72, 2014

UbDC 004.4'23

Boommuwuk @7_ »4@47@
Vestnif UGATU

ISSN 2225-2789 (Online)
http://journal.ugatu.ac.ru

CONCURRENT ERROR DETECTION FOR DISTRIBUTED SYSTEMS:
A CASE STUDY

A. RasHiDov', A. Morozov?, K. JANSCHEK®, N. Yusupova®

1arseniy.rashidov@gmail.com, 2andrey.morozov@tu-dresden.de,
3 klaus.janschek@tu-dresden.de, 4yussupova(czbugatu.ac.ru

4 Ufa State Aviation Technical University, Russia;
%3 Technische Universitit Dresden, Germany

Submitted 2014, June 10

Abstract. Error detection is defined as observation of system operation in order to ensure its consistency with
expected system behavior. According to IEEE stadards, error detection is one of the means to achieve fault
tolerance. Hence, error detection is a necessary part of safety-critical systems design. Concurrent error detec-
tion for distributed systems is one of the problems researched in a scope of a joint project S3ARV (Small &
Safe Space Autonomous Robotic Vehicles) of IfA, TU Dresden and iFR, Uni Stuttgart. In the presented article,
we introduce a new safety monitoring framework, based on concurrent error detection. Our approach is fo-
cused on monitoring of distributed real-time control software. A prototype of the framework is applied on a

real flight vehicle (an Octocopter).

Keywords: FDIR; error detection; safety monitoring; distributed systems.

1. INTRODUCTION
1.1. Motivation

Nowadays safety-critical systems such as
automobiles, airplanes, and spacecrafts have be-
come too complex to be developed without faults.
Hence, their correct utilization in the presence of
faults needs to be guaranteed. Some measures are
necessary to be taken to achieve fault tolerance.

According to [1], activity for fault tolerance
achievement is divided into error detection and re-
covery. On the other hand, according to [2] and [3],
the authors at ESA (European Space Agency) split
fault tolerance actions into fault detection, identifi-
cation/isolation, and recovery.

Research results, presented in this paper, be-
long to the field of error detection.

1.2. State of the Art

The known works address a problem of fault
detection based on probabilistic and other mathe-
matical models [4-7]. Whereas this is applicable to
many systems, there is a demand to develop simple
and reliable methods of error detection in the condi-
tion of scarce system resources.

On the other hand, not many works can be
found in the field of error detection for distributed

systems and real-time systems. Again, the main
focus in the known works [8, 9] is on the construc-
tion of fault models based on a comprehensive
mathematical apparatus.

We have not found works stressing the problem
of possible faults in the complementary parts of
distributed systems, such as network.

1.3. Problem Definition

Concurrent error detection for distributed sys-
tems is one of the problems researched in a scope
of a joint project S3ARV (Small & Safe Space
Autonomous Robotic Vehicles) of IfA, TU Dresden
and iFR, Uni Stuttgart. In the presented article, we
introduce a new safety monitoring framework,
based on concurrent error detection. Key functional
requirements to the framework are listed below:

e Receive safety states of critical software
components of the system;

e Estimate the whole system’s safety state us-
ing the received information;

e Send the system’s state to an automotive
control unit that can switch the system to the hover-
ing mode or to perform safety landing in case of
error detection;

e Downstream relative safety information to
a user.

A. Rashidov, A. Morozov, et al. ® CONCURRENT ERROR DETECTION FOR DISTRIBUTED ... 69

1.4. Special Requirements

The error detection framework must be appli-
cable to the S3ARV flight vehicle software, i. e.:
e Distributed software components on differ-
ent hardware processing units.

e Data-driven framework.
e TCP/IP connection interface.

e Strict memory and central processing usage
restrictions.

2. SAFETY MONITORING FRAMEWORK

2.1. Framework parts and their place
in the system

The safety monitoring framework is a set of
software tools for error detection that is developed
in the scope of S3ARV project. It consists of four
basic parts:

1. Safety clients at the system’s components
which send the error alerts generated inside a com-
ponent to the Safety Monitor;

2. Safety monitor which gets all the alerts
from the components and generates the system’s
state, considering system’s real-time properties and
a state machine (fig. 2). It then sends the system’s
state to the Error Handler and the LMD -
logging/monitoring data to the Safety Monitoring
Software.

3. Error handler which triggers recovery ac-
tions at the system’s Controller component;

4. Ground Control Safety Monitoring
Software which shows the user the state of all the
components and the system’s state and alerts in
case of error.

The dataflow between components is shown on
Fig. 1.

<<subsystem>>
Software of OnbComp

<<subsystem>>
Ground Control Subsystem

<<executable> > <<executable>>
Controller S3ARV component

<<executable>>

S3ARV component

|
<<application> E :
Software :
1

1
1
1
1 Safety Monitoring
1
1
1

<<executable>>

—
(? e Sy S3ARV component
] Z]
<<executable>> (' <<executable>>

Safety monitor S3ARV component

>
Software of NavComp

Fig 1. The place of the Safety monitor against the other
S3ARV components
2.2. Safety monitor

The main part of the framework is Safety moni-
tor. Its function is:

e To receive the system state messages from
the components;

e To check the system safety parameters:
timeouts between messages, component ID unique-
ness,

e To estimate the system state using the in-
formation from (1) and (2) and the recovery actions
state machine;

e To send the current system state messages
with certain frequency, as well as error messages
immediatly after new error registration.

? State diagram that describes safety aspects
/ Autonomous Mode \
Detection of a

catastrophic
fault or error

Manual Mode

Manual
Emergency
Landing

Safe
touchdown

RC
command

Safe Sub-mode

Detection of
a catastrophic
fault or error

Automatic
Detection Emergency

of a critical Landing Safe
fault or error / touchdown

Fig 2. The state machine of the controller’s recovery
actions

Safe State

One of the goals of the monitor design phase
was to keep it as simple as possible. Simplicity im-
proves reliability. The complete functional diagram
is presented on Fig. 3.

3. IMPLEMENTATION

The part of system is developed for two em-
bedded ARM platforms: Pandaboard ES' and Gum-
stix” running OpenEmbedded® GNU / Linux operat-
ing system. Ground control safety monitoring soft-
ware is deployed on a PC with Ubuntu OS* run-
ning. The components that run on the flight vehicle
are written in C++ with Boost 1.48 libraries® for
TCP/IP network communication (Boost.ASIO), as
well as threading and time management.

Ground Control Safety Monitoring Software is
implemented in C++ with Qt°® framework providing
both the TCP/IP network communication and user
interface.

The components are configured through con-
figuration files.

! http://pandaboard.org/

2 https://www.gumstix.com/

® http://www.openembedded.org/wiki/Main_Page
* http://www.ubuntu.com/

% http://www.boost.org/

® http://qt-project.org/

http://pandaboard.org/
https://www.gumstix.com/
http://www.openembedded.org/wiki/Main_Page
http://www.ubuntu.com/
http://www.boost.org/
http://qt-project.org/

MANAGEMENT, INFORMATION PROCESSING AND DECISION MAKING

4. CASE STUDY

A case study for the approach includes detection of
@ the following situations:
N e A component works properly and reports

its «alivey status on time (Fig. 4).

e A component sends an internally detected
error notification (Fig. 5).

—_— e A component is killed (Fig. 6).
e A component disconnects or delays trans-
Initialize mission (Fig. 7).
Safe_CmpStates[i]

e Component’s messages order is wrong or a
@ packet is lost.
Accept
boost:thread B
L Connect Disconnect
O O r @ system @ Test soL @ Test OK | @ Test Reports @ Test Killed @ Test slowpoke
- .. e o e e
T ———
Description [All the clients haje connected] Mo. Mai51... 120 1000 Alive.

o

Create acceptor

O

Descriptio

1 o
2 o
3 Mo.MaiS 1. 120 1000 o Alive.
This operation P . A =
"_Vi” take some ™ 5 Mo.Mais1.. 120 1000 0 Alive
time O 6 Mo Mais1... 120 1000 0 Alive.
7 Mo.Mais1...|120 1000 o Alive.
Read to buffer 8 Mo.MaiS1... 119 1000 o Alive
5 Mo.Mais1.. 119 1000 o Alive
DESCFIDUDHB 10 Mo Mais1.. 119 1000 [] Alive.
I 11 Mo.MaiS1... 119 1000 o Alive,
Thread lock is D 12 Mo.Mais1.. 119 1000] Alive
necessary! Safe_CmpStates[i] =
buffer Time soL Timeout State Message
1 Mo. Mai51 o 3000 3 The receive
-4) 2 MoMai51. 0 297 160
J
3 Mo.Maist. 0 3000 3 The receive...
™ 4 Mo.Maist. 0 207 160
Mo.Mai5 1... 0 3000 3 The receive.

Create sending A
socket Fig 4. A component that works normally

Descrip=

Thread | @ system @ Test SOL @ Test Ok @ Test Reports @ Test Killed @ Test Slowpoke
locked! . Time soL Timeout State Message
A 1 Mo.Mai51... 249 1000 3 (Dummy message) The vehicle has turned upside down
2 Mo. Mai 51 249 1000 3 (Dummy message) The vehicle has turned upside down.
O - 3 Mo.MaiS1.. 248 1000 3 (Dummy message) The vehicle has turned upside down.
4 Mo.Mai51.. 247 1000 3 (Dummy message) The vehicle has turned upside down.
S Mo.MaiS1.. 247 1000 3 (Dummy message) The vehicle has turned upside down.
6 Mo.Mai51... 247 1000 3 (Dummy message) The vehicle has turned upside down
™ 7 Mo.MaiS1... 247 1000 3 (Dummy message) The vehicle has turned upside down,
\|’ 8 Mo.MaiS1... 247 1000 3 (Dummy message) The vehicle has turned upside down.
9 Mo.Maisit.. 246 1000 3 (Dummy message) The vehicle has turned upside down.
10 Mo.Mai51... 245 1000 3 (Dummy message) The vehicle has turned upside down.
Generate Run io_service 11 Mo.Mai51... 245 1000 3 (oummy message) The vehicle has turned upside down
Safe_SysState or object 12 Mo.Mai51... 245 1000 3 (Dummy message) The vehicle has turned upside down.
LMD
Time soL Timeout State Message
1 Mo.Mai 51 o 3000 3 The receive.
2 Mo.Maist.. 0 297 160
@ 3 Mo.Mais1.. 0 3000 3 The receive.
4 Mo.Mai51... 0 97 160
5 Mo.Mais1.. 0 3000 3 The receive.
)] .
Fig 5. The component that reports error
Wait 10 or 100
L y,

Fig 3. Safety monitor functional diagram

A. Rashidov, A. Morozov, et al. ® CONCURRENT ERROR DETECTION FOR DISTRIBUTED ... 71

Connect Disconnect
@ system | @ Test SOL @ Test OK | @ Test_Reports | @ Test Killed | @ Test slowpoke

Time soL Timeou t State Message

safetyzclient has disconnected,

3
3
3
3
3
3
3 1000
3
3
3
3
3

Time. soL Timeout State Message

The receive.

The receive

=
8

Connect Disconnect

@ system @ Test SOL @ Test OK @ Test Reports @ Test Killed @ Test Slo

fore the timeout

8

8

soL Timeout State Message

Fig 7. The component that fails to send its state in time

B raeni@RSentJambo -/cloudyandex/dd2/drtfbin 79x13 raeni@RSeriJambo: ~/cloud/yandex/ddz2/drt/bin 7811
Safe state

2528

Fig 8. Six terminals with five running components
and the Safety monitor

5. CONCLUSION. PROJECT STATUS

We designed and prototyped Safety monitoring
framework for error detection in a particular dis-
tributed real-time system.

Future work includes:

e Framework testing in a joint project
S3ARYV of TU Dresden and Uni Stuttgart;

e Development of a scalable open-source
version of the framework for some kinds of real-
time systems in general;

e Development of an error identification /
isolation model, e. g. back error propagation model
and its connection with the framework.

REFERENCES

1. Auvizienis, Laprie, Randell “Fundamental Concepts of
Dependability”, 2001.

2. Andrea Guiotto, Andrea Martelli, Carlo Paccagnini,
Michelle Lavagna “SMART-FDIR: use of Artificial Intelligence in
the implementation of a Satellite FDIR”, 2003.

3. Niklas Holsti, Matti Paakko “Towards Advanced FDIR
Components”, 2001.

4. Oliver Arafat, Andreas Bauer, Martin Leucker, and
Christian Schallhart “Runtime verification revisited”. Technical
Report TUM-I05, Technical University of Munich, 2005.

5. Havelund K., Rosu G. “Synthesizing monitors for safety
properties.” In: Tools and Algorithms for Construction and
Analysis of Systems, pages 342-356, 2002.

6. Barringer H., Rydeheard D., Havelund K. “Rule sys-
tems for run-time monitoring: From eagle to ruler”. In RV07:
Proceedings of Runtime Verification 2007, number 4839 in
Lecture Notes in Computer Science, pages 111-125. Springer-
Verlag, 2007.

7. Havelund K. “Runtime verification of C programs.” In
TestCom/FATES, number 5047 in Lecture Notes in Computer
Science. Springer-Verlag, 2008.

8. D’Angelo B., Sankaranarayanan S., Sanchez C., Robin-
son W., Manna Z., Finkbeiner B., Spima H., Mehrotra S.
“LOLA: Runtime monitoring of synchronous systems”. In 12th
International Symposium on Temporal Representation and
Reasoning, pages 166-174. IEEE Computer Society Press,
2005.

9. Lee C. “Monitoring and Timing Constraints and
Streaming Events with Temporal Uncertainties.” PhD thesis,
University of Texas, 2005.

ABOUT AUTHORS

RASHIDOV, Arseniy, Post-graduate student in the Dept. of
Computer Science and Robotics, Ufa State Aviation Technical
University (USATU). Dipl.-Inf. degree in Math and CS (USATU,
2014).

MOROZOV, Andrey, Postdoc researcher at Institute of Auto-
mation (IfA), ET/IT, TU Dresden, Dipl-Inf. degree in Math and
CS (USATU 2007), Dr.-Ing. degree in the field of system de-
pendability (TUD 2012).

JANSCHEK, Klaus, Professor in the Institute of Automation,
Technische Universitat Dresden. Dipl.-Ing. degree in Electrical
Engineering (Technische Universitdt Graz, Austria, 1978).
Dr.techn. degree (with distinction) in Electrical Engineering
(Automatic Control, Prof. G. Schneider, Technische Universitat
Graz, Austria, 1982).

YUSUPOVA, Nafisa, Professor, Dr.-Eng. Dean of the Faculty of
Computer Science and Robotics, Ufa State Aviation Technical
University (USATU), Head of the Dept. of Computational
Mathematics and Cybernetics. Diploma in radiophysics (Vo-
ronezh State University, 1975). Dr.-Eng. (USATU, 1998).

72

MANAGEMENT, INFORMATION PROCESSING AND DECISION MAKING

METAAAHHDIE

HasBaHue: ConyTcTBylolee o6Hapy»KeHue owmnboK B pacnpe-

OEeNéHHbIX CUCTemax: MpakTU4yeckoe nccnegoBaHue.

Astopbli: A. O. Pawumgos, A. M. Moposos, K. fAHuek,

H. U. KOcynosa

OpraHusaumu: TexHuYeckuit yHusepcuteT [pesgeHa, lepma-

HuA. OrbOY BMNO «YduMCKMIM rocyaapcTBEHHbIA aBUaLM-
OHHbIN TEXHUYECKUI YyHUBEepcUTeT», Poccus.

Email: arseniy.rashidov@gmail.com,

andrey.morozov@tu-dresden.de,
klaus.janschek@tu-dresden.de, yussupova@ugatu.ac.ru.

A3bIK: aHNUIACKUIA.
UcTouHuK: BecTHuk YFATY. 2014. T. 18, Ne 5 (66). C. 68-72.

ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).

AHHoTauma: O6HapyKeHne oWNBOK onpeaeneHo Kak Habato-

LeHuve 3a paboToi cucTembl, YTODbI Y40CTOBEPUTLCA B CO-
OTBETCTBUN €€ GYHKLUMOHMPOBAHMA C OXUAIEMbIM MOBeE-
peHvem. CornacHo ctaHgapTam |EEE obHapyxeHue owwu-
60K — OOHO M3 CPeAaCcTB LOCTUMKEHMUA OTKA30YCTOMYUBO-
ctu. CnepoBatenbHo, Ob6Hapy)KeHWe OWMOOK —
HeobxoAMMasn 4YacTb npolecca pa3paboTKM YyBCTBUTE/b-
HbIX K OTKasam cuctem. ConyTcTBytowee obHapyeHue
OWMBOK B pacnpefenéHHbiX cMcTeMax — OAHa U3 npo-
6nem, uccnefyemblx B pPaMKax COBMECTHOrO MpoOeKTa
S3ARV (Small & Safe Space Autonomous Robotic Vehicles)
IfA, TU Dresden wu iFR, Uni Stuttgart. B npeactaBneHHom
cTaTbe aBTOPbl BBOAAT HOBbIV GpeliMBOpPK obecneyeHus
6€30MacHOCTM, OCHOBAHHbIN Ha COMyTCTBYHOWEM OOHapy-
YKEeHUM OWKNBOK. Haw noaxon HanpasieH Ha HabaloaeHne
33 pacnpegenéHHbIM - YyNpasBAAOWMM NPOrPaMMHbIM
obecneyeHvem peanbHoro BpemeHu. lNpoTtotun dperim-
BOPKa NPMMEHEH Ha sieTaTe/IbHOM annapaTe (OKTOKoMTe-
pe).

KioueBble cnoBa: FDIR; obHapyeHue OWMWOOK; MOHUTOP

6830I‘IaCHOCTVI; pacn pe,CI‘eJ'IéHHbIe CUcTtembl.

06 aBTopax:

PALLMAOB ApceHuit Onerosudy, acn. Kad. Bbl4. MaT. U KU-
6epHeTUKKU. Anna. mat.-nporpammuct (YIATY, 2014).

MOPO30B AHgpeir Muxainosuu, uccnegosBatenb
(Postdoc) WHctuTyTa aBTOMatMsauuu. [Auna. mar.-
nporpammucta (YFATY, 2007), Dr.-Ing. B obnactn Hagéx-
HocTu cuctem (TexH. yH-T [lpe3geHa, 2012).

AHYEK Knayc, npod. MHcTuTyTa aBTOMatMsaumu. Auna.
WHK. B 06/1. 9N1eKTpOUnHKeHepun (TexH. yH-T r. pau, ABCT-
pua, 1978). PhD (c otiMumem) B 06.. 31€KTPOUHKEHEPUMU
(Tam ke, 1982).

IOCYNOBA Haduca UcnamoBHa, gekaH ¢-Ta MHGopmaTu-
KM U pOBOTOTEXHMKM, 3aB. Kad. BblY. MaT. U KNBEPHETUKM.
Ounn. pagmodusmk (BopoHekck. roc. yH-T, 1975). O-p
TEXH. HayK Mo ynp. B TexH. cuctemax (YFrATY, 1998). Uccn.
B 06/1. cuTyaLl. ynpasieHua n UHGOPMATUKK.

mailto:andrey.morozov@tu-dresden.de

	001-002-Титул
	003-007-NtarlasGroumpos
	008-014-Bourgani
	015-019-AyguzinaValeev
	020-025-VochmintsevMelnikov
	026-030-ChirikovRoccaGrakhova
	031-041-ZakharovBogdanov
	042-047-VerkhoturovaLukjanov
	048-053-Gindullin
	054-056-Orekhovy
	057-061-GvozdevBezhaeva
	062-067-VorobyevShakirova
	068-072-RashidovMorozov
	073-078-KonovalovaPanyukov
	079-083-IlyasovKaramzina
	084-090-YusupovaSmetanina
	091-095-Badretdinovs
	096-098-MarkelovaTronci
	099-101-Enikeev
	102-104-BogdanovaAkhmetova
	105-108-IbatullinsMakhmutova
	109-113-AbramovaKopyleva
	114-117-KudryashevElkhova
	118-121-Elkhova
	122-126-Yartsev
	127-130-VladimirovaMironov
	131-138-ГоловнинМихеева
	139-145-Бойко
	146-152-Рассадникова
	153-158-Гучук
	159-164-ЕникееваРизванов
	165-174-ЕфановЗайцева
	175-180-СметанинаГаянова
	181-184-Климова
	185-191-ГузаировСметанина
	192-196-СавченкоКуреннов

