http://journal.ugatu.ac.ru

УДК 539

ТРАНСФОРМАЦИЯ СТРУКТУРЫ СПЛАВА TI10M08NB6ZR ПРИ ВОЗДЕЙСТВИИ ИПДК

А. 3. ХУСНУТДИНОВА¹, Д. В. ГУНДЕРОВ², С. К. КИСЕЛЕВА³, **А. А.** ЧУРАКОВА⁴, **А. В.** ШАРАФУТДИНОВ⁵

¹aliyana.husnutdinova@yandex.ru

^{1–5} ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ)
^{2, 4} Институт физики молекул и кристаллов Уфимского федерального исследовательского центра РАН
(ИФМК УФИЦ РАН)

Поступила в редакцию 25.03.2021

Аннотация. Исследована трансформация структуры и свойств β -титанового сплава Ti10Mo8Nb6Zr после интенсивной пластической деформации кручением (ИПДК). Рентгеноструктурный анализ показал, что структура сплава Ti10Mo8Nb6Zr в исходном состоянии представляет собой β -фазу. После ИПДК β -фаза остается основной. Ширина рентгеновских линий β -фазы резко повышается после ИПДК, что указывает на увеличение плотности дислокаций и измельчение зерен. При ИПДК происходит измельчение зерна. Анализ микроструктуры, выполненный методом просвечивающей электронной микроскопии показал, что после ИПДК с числом оборотов (n) 10 в сплаве формируется наноструктура с размером зерна менее 100 нм. Измельчение микроструктуры до наноуровня приводит к увеличению микротвердости материала на 20 %.

Ключевые слова: ИПДК; титановый сплав; наноструктура; микротвердость.

ВВЕДЕНИЕ

Титан и его сплавы широко используются в медицине для изготовления имплантатов из-за их высокой удельной прочности, коррозионной стойкости и биосовместимости [1].

Повышение прочностных свойств титановых сплавов может быть достигнуто за счет формирования нано- и ультрамелкозернистой структуры различными методами интенсивной пластической деформации (ИПД), в том числе ИПДК. Суть метода ИПДК заключается в достижении больших пластических деформаций при высоких приложенных давлениях для улучшения микроструктуры, которые могут быть проведены при температурах ниже температур фазовых превращений [2–4] и которые ра-

нее уже показали свою эффективность для повышения свойств титана и ряда титановых сплавов медицинского применения [5—7].

Команда университета Сан-Пауло, Бразилия, разработала новый β-Ті сплав Ti10Mo8Nb6Zr, перспективный в качестве материала медицинских имплантатов. Представляет большой научный и практический интерес исследование влияния интенсивной пластической деформации на структуру и свойства сплава Ti10Mo8Nb6Zr с целью повышения его эксплуатационных свойств.

В [9, 10] показано, что при ИПДК ряда сплавов реально достигаемая деформация у может быть значительно меньше, чем ожидаемая. Такое несоответствие можно объяс-

нить эффектом «проскальзывания» бойков по поверхности образца при ИПДК [8–12]. Однако, не смотря на проскальзывание, структура металлов и сплавов при ИПДК измельчается.

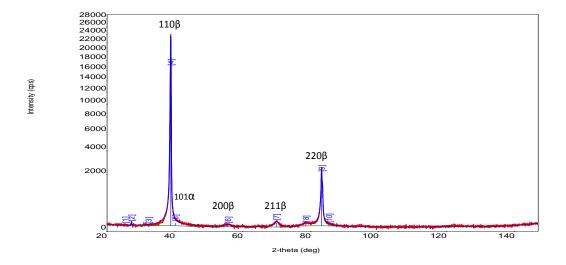
МАТЕРИАЛ И МЕТОДИКИ ИССЛЕДОВАНИЯ

Сплав Ti10Mo8Nb6Zr (мас.%) изготавливается с использованием дуговой плавильной печи с водоохлаждаемым медным тиглем в атмосфере аргона высокой чистоты. Слитки гомогенизируются при температуре $1000\,^{\circ}$ C в течение $24\,^{\circ}$ ч. Далее слитки подвергаются прокатке с использованием ротационного обжатия при комнатной температуре (конечный диаметр около $10\,^{\circ}$ мм), и закалке с $T=950\,^{\circ}$ C в воду для формирования состояния твердого раствора (исходное состояние S).

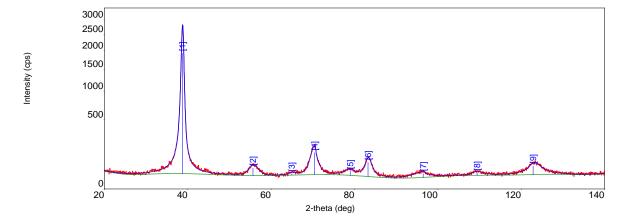
Сплав в состоянии S был подвергнут интенсивной пластической деформации кручением (ИПДК) под давлением 6 ГПа, при этом число оборотов составляло n=0,5; 1: 5: 10.

Оснастка для проведения ИПДК была оснащена бойками диаметром 20 мм с канавкой глубиной 0,6 мм, температура комнатная (КТ), давление 6 ГПа.

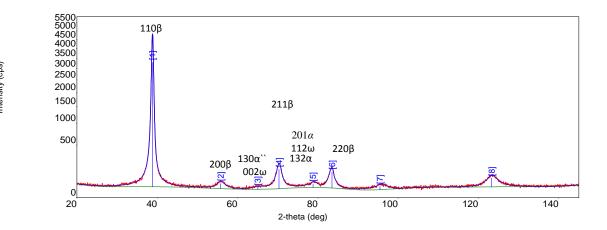
Для исследования структуры использовали метод рентгеновской дифракции с Сиизлучением с помощью дифрактометра «Rigaku Ultima IV» с использованием плоского графитового монохроматора. Тонкую структуру образцов исследовали с помощью просвечивающего электронного микроскопа «JEOL JEM-2100» при ускоряющем напряжении 200 кВ.


Микротвердость (HV) образцов измеряли по методу Виккерса под нагрузкой 1 H в течение 10 секунд.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Результаты РСА в исходном состоянии S (рис. 1) показали, что β -фаза является основной, на рентгенограммах присутствуют ее сильные линии ($\{110\}$, $\{220\}$) и слабые линии ($\{200\}$ $\{211\}$), а также слабые линии, принадлежащие α - и/или α "-фазам.

Сплав Ti10Mo8Mb6Zr в закаленном состоянии *S* был подвергнут ИПДК при КТ под давлением 6 ГПа, с разным числом оборотов. Рентгенограммы образцов сплава после ИПДК представлены на рис. 2–4.


Фазовый состав после ИПДК соответствует исходному фазовому составу. Доля дополнительных фаз не превышает 10 % (рис. 3, 4).

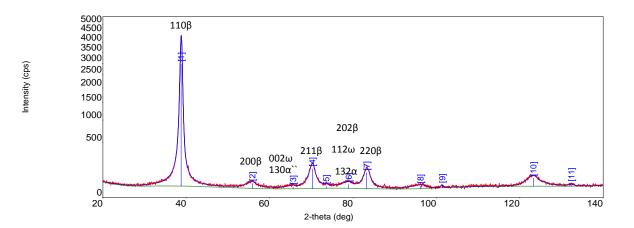
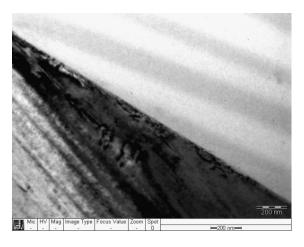
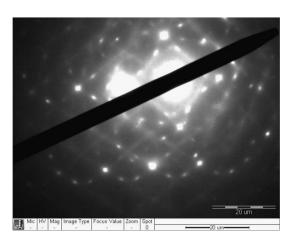

Рис. 1. Рентгенограмма сплава Ti10Mo8Nb6Zr в исходном состоянии (состояние S)

Рис. 2. Рентгенограмма сплава Ti10Mo8Mb6Zr после ИПДК, n=0.5

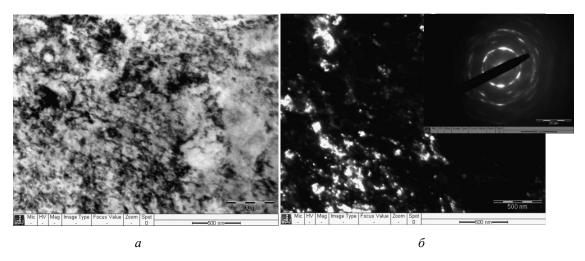
Рис. 3. Рентгенограмма сплава Ti10Mo8Mb6Zr после ИПДК, n=1

Рис. 4. Рентгенограмма сплава Ti10Mo8Mb6Zr после ИПДК, n=5

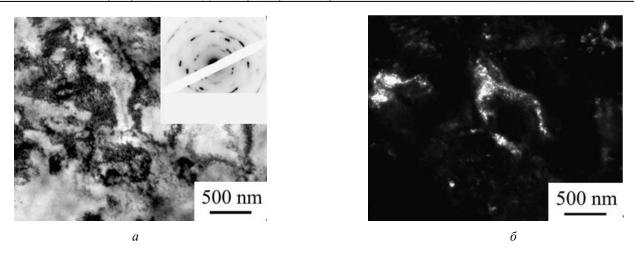

Ширина рентгеновских линий β -фазы увеличивается после ИПДК, что указывает на рост плотности дислокаций и измельчение зерен.


ПЭМ исследования показали, что в исходном состоянии наблюдается крупнозернистая структура. На рис. 5 в исходном состоянии в светлом поле наблюдается крупное зерно (более 1 мкм) и граница зерна.

По данным ПЭМ основной структурной составляющей после ИПДК n = 0.5 и n = 5


является наносубзеренная структура, образованная сеткой преимущественно малоугловых границ с большой плотностью дислокаций.

В микроструктуре сплава Ti10Mo8Nb6Zr после ИПДК с числом оборотов n = 0,5 и n = 5 (рис. 6, 7) не наблюдается значительных различий. Данный результат нуждается в дополнительном анализе. После ИПДК с n = 10 (рис. 8) формируется наноструктура с размером зерна менее 100 нм.



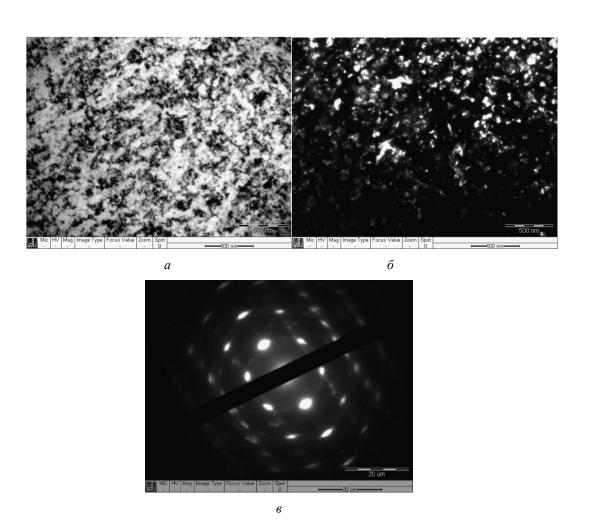

Рис. 5. Микроструктура сплава Ti10Mo8Nb6Zr в исходном состоянии: a-светлое поле; 6-микродифракция

Рис. 6. Микроструктура сплава Ti10Mo8Nb6Zr после ИПДК, n = 0.5: a - cветлое поле; 6 - mемное поле и микродифракция

Рис. 7. Микроструктура сплава Ti10Mo8Nb6Zr после ИПДК, n = 5: a-светлое поле c картинной дифракцией b верхнем правом углу; b — темное поле

Рис. 8. Микроструктура сплава Ti10Mo8Nb6Zr после ИПДК, n=10: a-светлое поле; б-темное поле; в-микродифракция

•		` ,	· / · ·		
	ucx. S	ИПДК, n = 0,5	ИПДК, n = 1	ИПДК, n = 5	<i>ИПДК, n = 10</i>
Центр HV	_	_	1	372	454
½R HV	_	384	391	428	432
Край HV	_	422	404	429	437
Общее среднее HV	326	403	397	409	441
<i>FWHM</i> (град)	0,2938(13)	0,792(6)	0,638(4)	0,714(4)	_

Таблица 1 Микротвердость и полуширина (FWHM) основной линии (110) β-фазы сплава Ti10Mo8Nb6Zr

Поскольку известно, что кручение приводит к неоднородности распределения микроструктуры и, соответственно, микротвердости в образце от центра к краю, ее измерения были проведены в центре, половине радиуса и крае каждого образца. Видно, что в центре образца ИПДК n=5(табл. 1) наблюдается минимальная микротведость, а в области ½R и края значения микротвердости повышены. ИПДК с небольшим числом оборотов n = 0.5 приводит к значительному росту микротвердости. Дальнейшее увеличение числа оборотов не приводит к дополнительному заметному росту микротвердости. Рост микротверсвидетельствует об уменьшении дости размера зерна, но прирост HV после ИПДК данного сплава (около 20 %) заметно меньше, чем прирост HV после ИПДК титана и α-Ті сплавов [8]. Это требует дополнительного анализа и изучения.

ЗАКЛЮЧЕНИЕ

Исследована трансформация структуры И свойств β-титанового сплава Ti10Mo8Nb6Zr после интенсивной пластической деформации кручением. Рентгеноструктурный анализ показал, что структура сплава Ti10Mo8Nb6Zr в исходном состоянии представляет собой β-фазу. Фазовый состав после деформационной обработки соответствует исходному фазовому составу. Доля дополнительных фаз не превышает 10 %. Ширина рентгеновских линий β-фазы увеличивается после ИПДК, что указывает на рост плотности дислокаций и измельчезерен. Согласно просвечивающей электронной микроскопии, после ИПДК с числом оборотов n = 10 в образцах сплава

формируется однородная наноструктура с размером зерна менее 100 нм. Измельчение микроструктуры приводит к увеличению микротвердости материала. ИПДК с числом оборотов n=0,5 приводит к значительному росту микротвердости — с 326 до 403 HV. Дальнейшее увеличение числа оборотов не приводит к дополнительному росту микро-твердости. В центре образца ИПДК n=5 микротведость меньше чем в области ½R и на краю образца. Прирост HV данного сплава после ИПДК (около 20 %) заметно меньше, чем прирост HV после ИПДК титана и α -Ti сплавов.

Исследовательская часть работы выполнена с использованием оборудования ЦКП «Нанотех» ФГБОУ ВО «УГАТУ».

СПИСОК ЛИТЕРАТУРЫ

- 1. **Titanium** in Medicine / D. M. Brunette, et al. Germany: Springer-Verlag Berlin Heidelberg, 2001. 1019 p. [D. M. Brunette, et al., *Titanium in Medicine*. Germany: Springer-Verlag Berlin Heidelberg, 2001.]
- 2. Валиев Р. 3., Александров И. В. Объемные наноструктурные металлические материалы. М.: ИКЦ Академкнига, 2007. 397 с. [R. Z. Valiev, I. V. Aleksandrov, *Bulk nanostructured metallic materials,* (in Russian). Moscow: IKTS Akademkniga, 2007.]
- 3. **Ma E.** Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Materials and Alloys // Journal of The Minerals, Metals & Materials Society. 2006. Vol. 58, no. 4. Pp. 49-53. [E. Ma, "Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Materials and Alloys", in *Journal of The Minerals, Metals & Materials Society*, vol. 58, no. 4, pp. 49-53, 2006.]
- 4. **Koch C. C.** Optimization of strength ad ductility in nanocrisrystalline and ultrafine grained metals // Scripta Materialia. 2003. Vol. 49, no. 7. Pp. 657-662. [C. C.Koch, "Optimization of strength ad ductility in nanocrisrystalline and ultrafine grained metals", in *Scripta Materialia*, vol. 49, no. 7, pp. 657-662, 2003.]

- 5. **Long-length** Ultrafine-grained Titanium Rods produced by ECAP-Conform / G. I. Raab, et al. // Materials Science Forum. 2008. Vol. 584-586. Pp. 80-87. [G. I. Raab, et al., "Long-length Ultrafine-grained Titanium Rods produced by ECAP-Conform", in *Materials Science Forum*, vol. 584-586, pp. 80-87, 2008.]
- 6. **Continuous** Equal-Channel Angular Pressing / Y. T. Zhu, et al. // Patent USA No. 7152448. Published 26.12.2006. [Y. T. Zhu, et al., Continuous Equal-Channel Angular Pressing, Patent USA No. 7152448, 2006.]
- 7. **Evolution** of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-Conform processing and drawing / D. V. Gunderov, et al. // Materials Science & Engineering: A. 2013. Vol. 562. Pp. 128-136. [D. V. Gunderov, et al., "Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-Conform processing and drawing", in *Materials Science & Engineering: A*, vol. 562, pp. 128-136, 2013.]
- 8. Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. Hoboken: Wiley, 2014. 440 p. [R. Z.Valiev, A. P. Zhilyaev, T. G. Langdon, *Bulk Nano-structured Materials: Fundamentals and Applications*. Hoboken: Wiley, 2014.]
- 9. **Observation** of shear bands in the Vitreloy metallic glass subjected to HPT processing / D. V. Gunderov, et al. // Journal of Alloys and Compounds. 2019. Vol. 800. Pp. 58-63. [D. V. Gunderov, et al., "Observation of shear bands in the Vitreloy metallic glass subjected to HPT processing", in *Journal of Alloys and Compounds*, vol. 800, pp. 58-63, 2019.]
- 10. Accumulative HPT of Zr-based bulk metallic glasses / D. V. Gunderov, et al. // Mater. Lett. 2020. Vol. 261. Article number 127000. [D. V. Gunderov, et al., "Accumulative HPT of Zr-based bulk metallic glasses", in *Mater. Lett.*, vol. 261, article number 127000, 2020.]
- 11. **Influence** of High-Pressure Torsion and Accumulative High-Pressure Torsion on Microstructure and Properties of Zr-Based Bulk Metallic Glass Vit 105 / D. Gunderov, et al. // Metals. 2020. Vol. 10, no. 11. Pp. 1-14. [D. Gunderov, et al., "Influence of High-Pressure Torsion and Accumulative High-Pressure Torsion on Microstructure and Properties of Zr-Based Bulk Metallic Glass Vit 105", in *Metals*, vol. 10, no. 11, pp. 1-14, 2020.]
- 12. **Accumulative** high-pressure torsion of steel 316 and B-Ti alloy / D. V. Gunderov, et al. / IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 1008. Article number 012013. DOI: 10.1088/1757-899X/1008/1/012013. [D. V. Gunderov, et al., "Accumulative high-pressure torsion of steel 316 and B-Ti alloy", in *IOP Conf. Series: Materials Science and Engineering*, vol. 1008, article number 012013, 2020. DOI: 10.1088/1757-899X/1008/1/012013.]

ОБ АВТОРАХ

ХУСНУТДИНОВА Алияна Зенфировна, студ. каф. МиФМ (УГАТУ). Иссл. в обл. наноструктурных материалов.

ГУНДЕРОВ Дмитрий Валерьевич, д-р физ.-мат. наук, вед. науч. сотр. ИФМК УФИЦ РАН. Развивает тему ИПДК материалов.

КИСЕЛЕВА Светлана Камильевна, доц. каф. МиФМ. Дипл. материаловедение в машиностроении (УГАТУ, 2000). Иссл. в обл. наноструктурных материалов.

ЧУРАКОВА Анна Александровна, канд. физ.-мат. наук, науч. сотр. ИФМК УФИЦ РАН. Развивает тему по ИПДК.

ШАРАФУТДИНОВ Альфред Васимович, инж. (УГАТУ). Проводит ИПДК обработку металлических материалов.

METADATA

Title: Changes in the properties and structure of the Ti10Mo8Nb6Zr alloy subjected to intense plastic torsion deformation.

Authors: A. Z. Khusnutdinova¹, D. V Gunderov², S. K. Kiseleva³, A. A. Churakova⁴, A. V. Sharafutdinov⁵

Affiliation:

Ufa State Aviation Technical University (UGATU), Russia.

2,4 Institute of Molecular and Crystal Physics of the Ufa Federal Research Center of the Russian Academy of Sciences, Russia.

Email: ¹aliyana.husnutdinova@yandex.ru.

Language: Russian.

Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 25, no. 2 (92), pp. 17-23, 2021. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).

Abstract: The transformation of the structure and properties of the beta-titanium alloy Ti10Mo8Nb6Zr after high pressure torsion (HPT) has been investigated. X-ray diffraction analysis showed that the structure of the Ti10Mo8Nb6Zr alloy in its initial state is a β -phase. After the HPT, a small number of secondary phases appear. Under HPT, the grain is refinement, which leads to an increase in the microhardness of the material.

Key words: HPT; titanium alloy; structure; properties.

About authors:

KHUSNUTDINOVA, Aliyana Zenfirovna, stud. kaf. MiFM. Research in the field of nanostructured materials.

GUNDEROV, Dmitry Valerievich, Dr. of Phys.-Math. Sci. Leading researcher of IFMC UFIC RAS. Develops the topic of HPT.

KISELEVA, Svetlana Kamilyevna, Ass. Prof. of the Dept. of MIFM. Dipl. Materials Science in Mechanical Engineering (UGATU, 2000). Research in the field of nanostructured materials.

CHURAKOVA, Anna Aleksandrovna, Cand. of Phys.-Math. Sci. Researcher of IFMC UFIC RAS. Develops the topic of HPT.

SHARAFUTDINOV, Alfred Vasimovich, Engineer (UGATU). Conducts HPT processing of metal materials.