МАТЕМАТИЧЕСКОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВЫЧИСЛИТЕЛЬНЫХ МАШИН...

УДК 519.173.5

А. Р. Ураков, А. А. Михтанюк, Т. В. Тимеряев

БЫСТРЫЙ ПОИСК ХАРАКТЕРИСТИК ВЗВЕШЕННОГО ГРАФА ПО МАТРИЦЕ КРАТЧАЙШИХ РАССТОЯНИЙ

Предлагаются алгоритмы быстрого поиска центра, радиуса и диаметра взвешенного графа по матрице кратчайших расстояний, использующие структурированность графов реальных дорожных сетей и приводятся результаты сравнительной оценки алгоритмов с поиском характеристик простым проходом по матрице. Центр графа; радиус графа; диаметр графа; матрица кратчайших расстояний; взвешенный граф; структурированность графа

ВВЕДЕНИЕ

Одними из важных характеристик графов являются центр, радиус и диаметр. Их нахождение часто является существенным этапом при решении задач на графах, а иногда и полностью решает поставленные задачи. Во многих случаях граф изначально представлен в виде списка ребер, в случае со взвешенным графом каждому ребру дополнительно приписан вес. При таких начальных условиях для графа находят матрицу кратчайших расстояний и одновременно с этим центр, радиус и диаметр. Соответственно, нахождение указанных величин будет быстрее при ускорении поиска кратчайших расстояний. В данном случае совершенствование методов решения более общей задачи дает и более быстрое нахождение указанных параметров графа. Методы ускорения поиска кратчайших расстояний между вершинами графа рассматриваются в [1–3].

Другой вариант задачи, когда граф уже имеет вычисленную матрицу кратчайших расстояний, но его центр, радиус и диаметр неизвестны. Такие ситуации возникают в нескольких случатах:

- изначально вычислять какую-то из характеристик не требовалось;
- матрица кратчайших расстояний графа каким-то образом изменяется, корректируется без пересчета кратчайших расстояний между всеми парами вершин;
- требуется вычислять центр, радиус и диаметр не для всего графа, а для некоторой группы вершин. При этом таких групп может быть несколько и они могут изменять свой состав.

1. ПОИСК ЦЕНТРА, РАДИУСА И ДИАМЕТРА ВЗВЕШЕННОГО ГРАФА

Задан связный неориентированный взвешенный граф G=(V,E,w) с неотрицательной весовой функцией w и мощность множества вершин |V|=n. Для данного графа дана матрица кратчайших расстояний $M=(m_{ij})$. Необходимо найти центр, радиус и диаметр данного графа.

Интересующие нас характеристики графа определяются следующим образом. Эксцентриситет вершины — максимальное из расстояний от данной вершины до других вершин. Радиус графа — минимальный из эксцентриситетов вершин связного графа; вершина, на которой достигается этот минимум, называется центральной вершиной (центром графа). Диаметр графа — это максимум расстояния между вершинами для всех пар вершин.

При вычисленной матрице кратчайших расстояний поиск центра, соответствующего ему радиуса и диаметра графа сводится к просмотру всех элементов этой матрицы и определению, соответственно, столбца, максимум значений которого минимален, и максимального элемента. Для простоты будет рассматриваться взвешенный неориентированный простой граф. Для такого вида графов сложность нахождения центра с радиусом и диаметра составляет порядка $O(n^2)$. Здесь n — количество вершин в графе.

При постройке дорожных сетей реального мира с себестоимостью прокладывания пути от одного узла до другого, человек структурирует сеть с целью минимизации затрат. Далее предлагаются алгоритмы, использующие эту структурированность для уменьшения времени поиска характеристик графов этих сетей.

Контактная информация: 8-917-751-30-10

1.1. Алгоритм быстрого поиска центра и радиуса

Алгоритм быстрого поиска центра и радиуса состоит из двух частей: ускорение поиска и непосредственно сам поиск центра и радиуса.

Ускорение поиска

На этапе ускорения ищется пара вершин (x,y), каждая из которых является самой удаленной для другой

$$x, y: m_{xy} = \max_{i=1,n} m_{iy} = \max_{i=1,n} m_{ix}.$$

Для этого выбирается любая вершина графа и обозначается p_1 , далее ищется вершина

$$p_2: m_{p_1p_2} = \max_{i=\overline{1,n}} m_{p_1i}.$$

Поиск вершин p_{j+1} продолжается до тех пор, пока не будет выполнено равенство $p_{j-1} = p_{j+1}$. В случае если равенство выполнено, полагаем $x = p_i$, $y = p_{j+1}$.

Поиск центра и радиуса

Шаг 1. Поиск центра состоит в последовательном рассмотрении претендентов на центр. Первый претендент на центр c ищется как вершина, максимум удаления которой от пары (x, y) минимален

$$c: \max(m_{cx}, m_{cy}) = \min_{i=1,n} (\max(m_{ix}, m_{iy})).$$

После нахождения c величина $r = \max(m_{cx}, m_{cy})$ является первым приближением радиуса графа.

Шаг 2. Для проверки c на центр ищется периферийная вершина

$$z: m_{zc} = \max_{i=1,n} m_{ic}.$$

Утверждение. Если $m_{zc} = r$, то r – радиус, а c – один из центров графа.

Доказательство. Дано

$$\max_{i=1,n} m_{ic} = r = \min_{i=1,n} (\max(m_{ix}, m_{iy})),$$

То есть r — максимальное расстояние от c до любой другой вершины, но в то же время r — минимальное расстояние до одной (а возможно, и обоих) из вершин (x, y). Поэтому для любой другой вершины d максимум расстояния до одной вершины из пары (x, y) будет не меньше $r \le \max(m_{dx}, m_{dy})$. Следовательно, c — центр, хотя в общем случае и не единственный.

Если $m_{zc} > r$, радиус графа R лежит в пределах $r \le R \le m_{zc}$ и необходимо выбрать другого претендента на центр. Перед тем как искать

следующего претендента, производится попытка ускорения поиска. Ищется вершина t: $m_{zt} > m_{xy}$. Если вершина, удовлетворяющая этим условиям, найдена, то x = z, y = t и переходим к шагу 1 поиска центра и радиуса. Если же такая вершина не была найдена, ищем нового претендента на центр. Среди нерассмотренных на центр вершин находится вершина

$$d: \max(m_{dx}, m_{dy}, m_{dz}) = \min_{i=1,n} (\max(m_{ix}, m_{iy}, m_{iz})).$$

Если максимальное расстояние от этой вершины до других меньше, чем текущая верхняя граница радиуса $\max_{i=1,n} m_{di} < m_{zc}$, то d — новый претендент на центр (c=d), переходим к шагу 2 поиска центра и радиуса. Если $\max_{i=1,n} m_{di} = m_{zc}$, то c — центр, а r — радиус. Если $\max_{i=1,n} m_{di} > m_{zc}$, то

заново ищем вершину d, помечая текущую как рассмотренную на центр.

1.2. Алгоритм быстрого поиска диаметра

Алгоритм быстрого поиска диаметра устроен подобно алгоритму поиска центра и радиуса. Так же, как и при поиске центра, ищем пару вершин (x, y), каждая из которых является самой удаленной для другой. Величина $d = m_{xy}$ при этом является текущим претендентом на диаметр. Далее, таким же образом, как и в алгоритме поиска центра и радиуса, ищется вершина c, максимум удаления которой от пары вершин (x, y) минимален среди всех остальных вершин. После этого диаметр ищется в столбцах матрицы только тех вершин i, для которых выполнено неравенство $m_{ci} > d/2$.

Утверждение. Диаметр графа D=d или находится в столбцах матрицы кратчайших расстояний тех вершин i, для которых выполнено неравенство $m_{ci} > d/2$.

Доказательство. Если $d=m_{xy}$ не является диаметром графа, то существует пара вершин z, t: $m_{zt} > m_{xy}$. Для матрицы кратчайших расстояний справедливо $m_{zt} \le m_{zc} + m_{ct}$. Следовательно, $m_{xy} = 2*d/2 < m_{zc} + m_{ct}$, то есть необходимо либо $m_{zc} > d/2$, либо $m_{ct} > d/2$.

2. РЕЗУЛЬТАТЫ

Сравнение предложенных алгоритмов быстрого поиска (БП) с простым проходом по матрице кратчайших расстояний (ПМ) было проведено на 20 графах реальных дорожных сетей, характеристики которых приведены в таблице

ниже. Производилось вычисление отдельно центра с радиусом и диаметра, а также их совместное нахождение. Для уточнения результатов вычисления производились несколько раз, в таблицах представлены средние значения времени поиска. Так как тестовые графы обладают небольшим количеством вершин, при сравнении каждый метод выполнялся 1000 раз и замерялось общее время выполнения. Тестирование производилось на ПК с процессором Intel Core 2 Duo E8400.

Результаты испытаний и характеристики тестовых графов

Вершин	Центр, радиус		Диаметр		Центр, радиус	
					и диаметр	
Bej	ПМ,	БП,	ПМ,	БП,	ПМ,	БП,
	c	c	c	c	c	c
528	1,4	0,015	0,64	0,015	1,5	0,016
814	3,5	0,047	1,5	0,031	3,6	0,031
1291	8,2	0,047	4,1	0,047	8,4	0,062
1302	8,5	0,047	4,1	0,031	8,7	0,062
1601	13	0,063	6,2	0,047	13	0,063
1641	13	0,23	6,5	0,078	13	0,26
1645	13	0,13	6,6	0,093	14	0,203
1870	18	0,11	8,7	0,078	18	0,13
2059	21	4,2	10	0,203	22	4,3
2150	23	0,094	11	0,062	23	0,094
2194	24	0,093	12	0,078	25	0,093
2280	24	0,16	13	0,109	25	0,203
2424	29	0,14	14	0,109	30	0,19
2484	30	0,81	15	0,109	32	0,83
2542	31	0,19	16	0,094	32	0,22
2896	42	0,45	20	0,14	44	0,5
2921	42	0,109	21	0,094	43	0,16
2964	42	1,7	21	0,13	43	1,8
3060	44	0,25	22	0,11	45	0,23
3364	55	0,23	27	0,204	56	0,28

Алгоритм быстрого поиска центра и радиуса справляется с задачей в среднем в 150 раз быстрее, чем простой проход по матрице кратчайших расстояний, ускорение времени вычисления варьируется от 5 до 380 раз. Для поиска диаметра эти цифры — в 125 раз, от 40 до 220 раз; для совместного поиска центра, радиуса и диаметра — в 135 раз, от 5 до 270 раз.

По таблице можно заметить значительную (0,75) корреляцию между временем поиска диаметра предложенным алгоритмом и количеством вершин в графе.

ЗАКЛЮЧЕНИЕ

В статье предложены точные, не эвристические алгоритмы быстрого поиска центра, радиуса и диаметра взвешенного графа по матрице кратчайших расстояний. Представленные алгоритмы на тестовых графах нашли центр и радиус в среднем в 150 раз, диаметр в 125 раз, а совместно центр, радиус и диаметр в 135 раз быстрее в сравнении с нахождением этих величин простым проходом по матрице кратчайших расстояний.

Предложенные алгоритмы не гарантируют ускорения вычисления указанных характеристик для произвольных графов, можно построить граф, на котором ускорения не будет. Но в реальности дорожная сеть, представленная таким графом, будет экономически невыгодной или даже не реализуемой.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Johnson D.B.** Efficient algorithms for shortest paths in sparse graph // Journal of the ACM. 1977. № 24. P. 1–13.
- 2. **Galil Z., Margalit O.** All pairs shortest distances for graphs with small integer length edges // Information and Computation. 1997. № 134. P. 103–139.
- 3. **Zwick U., Shoshan A.** All pairs shortest paths in undirected graphs with integer weights // Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, 1999. P. 605–614.

ОБ АВТОРАХ

Ураков Айрат Ренатович, доц. каф. компьютерн. математики УГАТУ. Дипл. инженер-системотехник (МГТУ, 1993). Канд. физ.-мат. наук по применению вычислительн. техники, математическ. моделирования и математическ. методов в научных исследованиях (БашГУ, 1997). Иссл. в обл. применения численных методов и верификации данных.

Михтанюк Алэна Александровна, доц. той же каф. Дипл. инженер-системоаналитик (УГАТУ, 1995). Канд. техн. наук по САПР (УГАТУ, 2003). Иссл. в обл. методов оптимизации.

Тимеряев Тимофей Валерьевич, асп. той же каф. Дипл. магистр прикл. матем. и инф. (УГАТУ, 2011). Иссл. в обл. теории графов.