АВИАЦИОННАЯ И РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА

УДК 621.64:621.51

А. С. Гишваров, Е. А. Могильницкий, И. И. Гиззатуллин

ОЦЕНКА СОСТОЯНИЯ ГАЗОТУРБИННОГО ПРИВОДА С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННОГО ПОТЕНЦИАЛА СТАТИСТИЧЕСКИХ ДАННЫХ ЭКСПЛУАТАЦИИ

Решается задача оценки состояния наземного газотурбинного привода (ГТП) АЛ-31СТ компрессора газоперекачивающей станции с использованием в качестве источника информации энтропии К. Шеннона, определяемой по априорным статистическим данным отказов ГТП в эксплуатации. Газотурбинный привод (ГТП); компрессор; диагностика состояния; энтропия; интенсивность и вероятность отказов; количество информации; наработка

Перевод газотурбинных приводов (ГТП) компрессоров газоперекачивающих станций на эксплуатацию по техническому состоянию предполагает наличие эффективной системы обслуживания, включающей диагностику и прогнозирование состояния, позволяющие обнаруживать неисправности ГТП до наступления катастрофического состояния. Опыт эксплуатации ГТП показывает, что информационный потенциал контролируемых параметров, являющихся носителями информации об объекте диагностирования, используется не в полной мере. Очевидно, что это ведет к снижению эффективности системы оценки и прогнозирования состояния ГТП. В данном случае повысить эффективность представляется возможным за счет: использования априорных статистических данных состояния ГТП, включая вероятностную оценку проявления состояний, диагностические признаки этих состояний; оптимального выбора метода диагностики; более полного учета информационной ценности контролируемых в эксплуатации параметров, при этом отдавая предпочтение параметрам, обладающим максимальной информативностью. В работах [4-6] было предложено использовать информационную энтропию К. Шеннона для решения задач по оценке состояния изделий типа авиационных ГТД. Понятие «информация» в теории связи трактуется по-разному:

• одно из них совпадает с энтропией Больцмана и является фактически мерой неопределенности системы при ее статистическом описании;

Контактная информация: ad@mail.rb.ru

Работа выполнена при финансовой поддержке министерства образования и науки Российской Федерации.

• второе выражается через разность значений безусловной и условной энтропий.

Конкретизация второго определения позволяет ввести меру информации о состоянии технической системы в зависимости от значений управляющих параметров.

Предложенная К. Шенноном мера предназначалась для анализа сообщений, передаваемых по каналам связи, и является чрезвычайно удобной по причине простоты ее вычисления; аддитивности по отношению к последовательно поступающим сообщениям; сходства с важной физической величиной — термодинамической энтропией. Применительно к техническим изделиям типа газотурбинных двигателей (приводов) и энергетических установок (ЭУ) она становится единственной и универсальной мерой количества информации, т. е. в информационных процессах ГТП и ЭУ этот параметр может быть использован в качестве оценочного параметра.

В настоящее время широкое распространение получила параметрическая диагностика состояния ГТП [1–3, 7], что объясняется ростом количества диагностируемых элементов на современных ГТП и ЭУ. Однако по причине наличия неопределенности в трактовке получаемой информации, эффективность диагностирования ГТП остается невысокой, являясь источником возникновения ошибок 1 и 2 рода.

Одним из направлений повышения эффективности диагностики состояния является применение статистических моделей, отражающих поведение ГТП и ЭУ в различных состояниях, включая отказные. В данном случае оценка состояния сводится к отнесению фактического состояния объекта к одному из нескольких классов, перечень которых известен заранее:

при этом каждый класс характеризуется собственным эталоном, со своими усредненными по параметрам признаками [6]. Поскольку информационная ценность контролируемых параметров ГТП и ЭУ неодинакова, то важно выявить из них наиболее ценные для диагностики состояния.

Формирование номенклатуры диагностических признаков может проводиться несколькими методами [3, 8, 9]:

- методом малых отклонений, где имеющие наибольшие значения коэффициенты влияния, признаются наиболее информативными;
- методом факторного анализа, где по результатам многофакторного эксперимента определяется связь обобщенного показателя качества объекта с контролируемыми параметрами и проводят оценку значимости коэффициентов полученной функциональной зависимости;
- математическим моделированием или полунатурными испытаниями объекта, где после проведения серии экспериментов, связанной с имитацией характерных отказов, определяются признаки, наиболее чувствительные к изменению состояния объекта;
- методом экспертных оценок, где перечень контролируемых параметров объекта устанавливается с учетом мнений экспертов, являющихся специалистами в данной области;
- оптимизацией перечня контролируемых параметров, позволяющего оценить экстремум выбранного критерия оптимальности.

При наличии определенной совокупности диагностических признаков $K_1, K_2, ..., K_N$, характеризующих возможные состояния объекта, он в произвольный момент может находиться либо в исправном состоянии D_0 с вероятностью P_0 , либо в любом из отказных состояний $D_1, D_2, ..., D_r$ с соответствующими вероятностями $P(D_1)$, $P(D_2), ..., P(D_r)$. Влияние отказов различных элементов объекта определяется с помощью матрицы состояний $M = ||M_{ij}||_{N(r+i)}$, число строк которой равно общему количеству признаков, а число столбцов — количеству возможных состояний объекта. При этом $M_{ij} = 1$, если параметр d_k принимает допустимые значения состояния D_i , и $M_{ij} = 0$ — в противном случае.

Полная информационная энтропия К. Шеннона определяется по формуле [8]:

$$H_0 = -\sum_{i=0}^{r} P(D_j) \cdot \ln P(D_j). \tag{1}$$

Очередной контроль признака состояния объекта в эксплуатации ведет к снижению энтропии, поскольку несет информацию о его состоянии. При этом средняя условная энтропия объекта после регистрации признаков состояния становится равной сумме:

$$H_i = P(d_{Ki}) \cdot H(d_{Ki}) + P(\overline{d}_{Ki}) \cdot H(\overline{d}_{Ki}), \quad (2)$$

где $P(d_{\mathit{K}i})$ и $P(\overline{d}_{\mathit{K}i})$ – соответственно вероятности получения результатов о состоянии объекта «в норме» и «не в норме»; $H(d_{\mathit{K}i})$ и $H(\overline{d}_{\mathit{K}i})$ – соответствующие данным результатам условные энтропии.

Значения $P(d_{Ki})$ и $P(\overline{d}_{Ki})$ определяются, используя матрицу состояний, по формулам:

$$P(d_{Ki}) = \sum_{j \in \Omega_i} P(D_j); \quad P(\overline{d}_{Ki}) = \sum_{j \in \overline{\Omega}_i} P(D_j), \quad (3)$$

где $\Omega_i = [j: M_{ii} = 0]$ — множество индексов, составленное из номеров столбцов j, имеющих символы 0 на пересечении с i-й строкой матрицы M.

Энтропия состояния объекта после проведения оценки состояния по признаку K_i определяется по формулам:

$$H(K_i) = -\sum_{j \in \Omega_i} P(D_j / K_i) \ln P(D_j / K_i); \tag{4}$$

$$H(\overline{K}_i) = -\sum_{i \in \overline{\Omega}_i} P(D_j / \overline{K}_i) \ln P(D_j / \overline{K}_i), \qquad (5)$$

где
$$\sum_{i \in \Omega_i} P(D_j / K_i)$$
, $\sum_{i \in \Omega_i} P(D_j / \overline{K}_i)$ – условные ве-

роятности, соответствующие различным результатам оценки объекта по признаку K_i , определяемые по формуле Байеса [8]:

$$P(D_j/K_i) = \frac{P(D_j)}{\sum_{i \in \Omega_i} P(D_j)}; P(D_j/\overline{K}_i) = \frac{P(D_j)}{\sum_{i \in \overline{\Omega}_i} P(D_j)}.$$
 (6)

Подставляя (4), (5), (6) в (2), определим количество информации, полученное в результате диагностирования объекта по признаку K_i :

$$I(K_i) = H_0 - H_i(K_i).$$
 (7)

Аналогичные расчеты проводятся для всех признаков K_i (i=1, 2,..., N), из которых выбирается признак с максимально полезной информацией и который должен контролироваться в первую очередь.

Далее по порядку проверяется признак K_m , обеспечивающий максимум условной информации относительно нового состояния объекта с энтропией H_{il} и т. д. Таким образом, условная энтропия $H_{il}(K_i/K_l)$, определяется по формуле:

 $H_{il}(K_i/K_l) = P(K_i/K_l) \cdot H(K_i/K_l) +$ $+ P(\overline{K}_i/K_l) \cdot H(\overline{K}_i/K_l) + P(K_i/\overline{K}_l) \cdot H(K_i/\overline{K}_l) +$ $+ P(\overline{K}_i/\overline{K}_l) \cdot H(\overline{K}_i/\overline{K}_l),$ (8)

где $P(K_i \mid K_l)$ и $P(\overline{K}_i \mid K_l)$ — соответственно условные вероятности того, что признак K_i находится в пределах своего поля допуска или вне его пределов, если ранее зарегистрированный признак K_i «в норме»; $P(K_i \mid \overline{K}_l)$ и $P(\overline{K}_i \mid \overline{K}_l)$ — условные вероятности нахождения признака K_i в заданных пределах.

Для всех $i \neq l$:

Количество информации, полученное в результате контроля признака K_i ($i \neq l$) относительно состояния, возникшего после диагностирования по признаку K_l , определяется по формуле:

$$I(K_{i}/K_{i}) = H_{i}(K_{i}) - H_{ii}(K_{i}/K_{i}).$$
 (10)

Очевидно, что можно найти такой признак K_m , для которого:

$$I(K_{...}/K_{.}) = \max I(K_{.}/K_{.}).$$
 (11)

Рассмотрим процедуру оценки информативности диагностических признаков объекта на примере наземной энергетической установки ГТП АЛ-31СТ.

Было исследовано 47 приводов, эксплуатирующихся на различных объектах «Газпром».

Обработкой статистических данных были определены системы ГТП, наиболее подверженные неисправностям: масляная (МС) и топливная (ТС) системы, турбина высокого давления (ТВД) и система механизации компрессора (МК). Поскольку исходные вероятности состояний ГТП являются функциями времени, то определение совокупности наиболее информативных признаков проводилось для нескольких значений t в интервале (0... T_c), где T_c — время работы системы ГТП.Вероятность отказа в каждой из подсистем подчиняется экспоненциальному закону:

$$P_i(t) = 1 - e^{-\lambda_i \cdot t}, (i = 1, 2, ..., 4),$$
 (12)

где $\lambda_i(t)$ — интенсивности отказов, значения которых приведены в табл. 1–4.

Таблица 1

Интенсивность отказов МС									
Δt_i , час	Δn_i	$n_i(t)$	$\lambda_i(t)$, час ⁻¹						
0-1000	11	0	0,000234						
1000-2000	4	11	0,000111						
2000-3000	5	15	0,000156						
3000-4000	3	20	0,000111						
4000-5000	1	23	0,000042						
5000-6000	0	24	0						
6000-7000	2	24	0,000087						
7000-8000	2	26	0,000095						
		Σ	0,000836						
		$\lambda_{ m cp}$	0,000105						

Таблица 2 **Интенсивность отказов Т**С

Δt_i , час	Δn_i	$n_i(t)$	$\lambda_i(t)$, час ⁻¹
0-1000	7	0	0,000149
1000-2000	9	7	0,000225
2000-3000	4	16	0,000129
3000-4000	6	20	0,000222
4000-5000	0	26	0
5000-6000	0	26	0
6000-7000	0	26	0
7000-8000	2	26	0,000095
		Σ	0,00082
		λ_{cp}	0,000103

Таблица 3 **Интенсивность отказов ТВД**

			, ,
Δt_i , час	Δn_i	$n_i(t)$	$\lambda_i(t)$, час ⁻¹
0-1000	4	0	0,000085
1000-2000	0	4	0
2000-3000	1	8	0,000026
3000-4000	3	9	0,000079
4000-5000	5	12	0,000143
5000-6000	3	17	0,0001
6000-7000	2	20	0,000074
7000-8000	2	22	0,00008
		Σ	0,000587
		$\lambda_{\rm cp}$	0,000073

Таблица 4 Интенсивность отказов МК

Δt_i	Δn_i	$n_i(t)$	$\lambda_i(t)$
0-1000	3	0	0,000064
1000-2000	0	3	0
2000-3000	3	3	0,000068
3000-4000	0	6	0
4000-5000	1	6	0,000024
5000-6000	0	7	0
6000-7000	0	7	0
7000-8000	0	7	0
		Σ	0,000156
		λ_{cp}	0,00002

Видно, что при эксплуатации ГТП, наиболее часто встречающиеся отказы вышеперечисленных узлов и систем распределены неравномерно. Для дальнейшего анализа интервал наработки был разделен на три:

- в интервале от 0 до 3000 часов наиболее часто встречаются отказы МС и ТС;
- в интервале от 3000 до 6000 часов превалируют отказы ТВД;
- в интервале от 6000 до 8000 часов превалируют отказы МС и ТВД.

В интервале наработки от 0 до 3000 часов ГТП может находиться в одном из трех состояний (D_0, D_1, D_2) (табл. 5):

- D_0 все системы исправны;
- D_1 неисправность MC

 $(\lambda_1 = \lambda_{MC} = 0.000167);$

• D_2 – неисправность топливной системы ($\lambda_2 = \lambda_{TC} = 0{,}000168$).

Таблица 5 **Матрица состояний ГТП**

	Состояние			
Признак состояния двигателя		игате	ЛЯ	
	D_0	D_1	D_2	
1. K_1 (повышение температуры масла в линии откачки из опоры турбины более чем на 10 °C при неиз-	0	1	0	
менном режиме (N_{cr} = const)) 2. K_2 (повышение температуры газов перед СТ (T_4) более чем на 20 °С при неизменном режиме (N_{cr} = const) и постоянной температуре на входе в двигатель (T_1 = const))	0	0	0	
3. K_3 (повышенный расход масла (более 0,5 кг/час))	0	1	0	
4. K_4 (высокий разброс показаний температуры газов перед СТ ($\Delta T_4 > 110$ °C))	0	0	1	
5. K_5 (увеличение перепада давления на фильтрах в линии нагнетании и откачки на величину $0,20,3$ кг/см ² за время 024 часа)	0	1	0	
6. <i>К</i> ₆ (выбег роторов, сек)	0	1	0	
7. <i>K</i> ₇ (рассогласование задания и положения клапана перепуска воздуха (КПВ), α ₃)	0	0	0	
8. K_8 (рассогласование задания и положения направляющих аппаратов (НА) КВД, α_2)	0	0	0	
9. K_9 (негерметичность)	0	1	1	
10. K_{10} (неисправность датчиков (отказ каналов измерения))	0	1	1	

Средние значения вероятностей реализации каждого из состояний в интервале наработки 0...3000 часов следующие:

$$P_{0} = \frac{1}{t(\lambda_{1} + \lambda_{2})} = 1 - e^{(-(\lambda_{1} + \lambda_{2})t)} = 0,634;$$

$$P_{1} = \frac{\frac{1 - e^{(-(\lambda_{2})t)}}{\lambda_{2}} - \frac{1 - e^{(-(\lambda_{1} + \lambda_{2})t)}}{\lambda_{1} + \lambda_{2}}}{t} = 0,155;$$

$$P_{2} = \frac{\frac{1 - e^{(-(\lambda_{1})t)}}{\lambda_{1}} - \frac{1 - e^{(-(\lambda_{1} + \lambda_{2})t)}}{\lambda_{1} + \lambda_{2}}}{t} = 0,156.$$

По формуле (1) энтропия исходного состояния ГТП равна:

$$H_0 = -(P_0 \ln(P_0) + P_1 \ln(P_1) + P_2 \ln(P_2)) = 0.867.$$

В процессе исследования принималось, что состояние ГТП характеризуется десятью признаками $K_1, ..., K_{10}$.

Тогда средняя условная энтропия состояния ГТП при условии изменения признака K_1 будет равна:

$$H_{K_1} = (P_0 + P_2) \cdot ((-\frac{P_0}{P_0 + P_2} \ln(\frac{P_0}{P_0 + P_2})) + (-\frac{P_2}{P_0 + P_2} \ln(\frac{P_2}{P_0 + P_2}))) = 0,392.$$

Аналогично находим среднюю условную энтропию состояния ГТП при условии изменения признаков K_2 , K_4 и K_9 :

$$H_{K_2} = 0.813; H_{K_4} = 0.390; H_{K_9} = 0.215;$$

 $H_{K_1} = H_{K_3} = H_{K_5} = H_{K_6} = 0.392;$
 $H_{K_2} = H_{K_7} = H_{K_8} = 0.813;$
 $H_{K_9} = H_{K_{10}} = 0.215.$

В интервале наработки от 0 до 6000 часов ГТП может находиться в одном из четырех состояний (D_0 , D_1 , D_2 , D_3):

- D_0 все системы исправны;
- D_1 неисправность MC

 $(\lambda_1 = \lambda_{MC} = 0.0001);$

• D_2 – неисправность TC

 $(\lambda_2 = \lambda_{TC} = 0.00012);$

• D_3 – неисправность ТВД

$$(\lambda_3 = \lambda_{TBJI} = 0.00007).$$

Средние значения вероятностей реализации каждого из состояний в данном интервале наработки составляют:

$$P_0 = 0.837$$
; $P_1 = 0.131$; $P_2 = 0.148$; $P_3 = 0.081$.

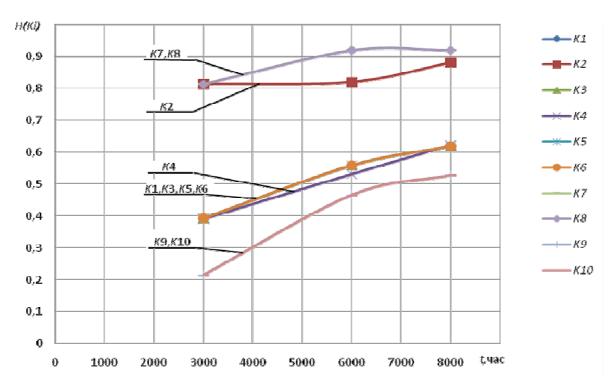


Рис. 1. Изменение информационной энтропии ГТП АЛ-31СТ по наработке

При этом энтропия исходного состояния ГТП равна:

$$H_0 = -(\sum_{j=0}^4 P_j \ln(P_j)) = 0.901.$$

Матрица состояний ГТП для рассматриваемого случая по структуре аналогична табл. 5.

Средняя условная энтропия состояния ГТП при условии изменения признака K_1 равна:

$$H_{K_1} = 0,558.$$

Аналогично находим среднюю условную энтропию состояния ГТП при условии изменения признаков K_2 , K_4 , K_7 и K_9 :

$$\begin{split} H_{K_2} = 0,820; \ H_{K_4} = 0,531; \ H_{K_7} = 0,919; \\ H_{K_9} = 0,466; \\ H_{K_1} = H_{K_3} = H_{K_5} = H_{K_6} = 0,558; \\ H_{K_7} = H_{K_8} = 0,919; \ H_{K_9} = H_{K_{10}} = 0,466. \end{split}$$

В интервале наработки от 0 до 8000 часов ГТП может находиться в одном из 5 состояний (D_0 , D_1 , D_2 , D_3 , D_4):

- D_0 все системы исправны;
- D_1 неисправность МС $(\lambda_1 = \lambda_{MC} = 0,0001);$
- D_2 неисправность TC

$$(\lambda_2 = \lambda_{TC} = 0.0001);$$

• D_3 – неисправность ТВД

$$(\lambda_3 = \lambda_{TBJI} = 0,00007);$$

• D_4 – неисправность системы механизации компрессора ($\lambda_4 = \lambda_{\text{CMK}} = 0,00002$).

Средние значения вероятностей реализации каждого из состояний в данном интервале наработки составляют:

$$P_0 = 0.910; P_1 = 0.127;$$

 $P_2 = 0.129; P_3 = 0.082; P_4 = 0.020.$

При этом энтропия исходного состояния ГТП: $H_0 = 0.89$.

Средняя условная энтропия состояния ГТП при условии изменения признака K_1 :

$$H_{K_1} = 0,618.$$

Аналогично находим среднюю условную энтропию состояния ГТП при условии изменения признаков K_2 , K_4 , K_7 и K_9 : $H_{K_0} = 0,528$;

$$H_{K_2} = 0.881; H_{K_4} = 0.623; H_{K_7} = 0.919;$$

 $H_{K_1} = H_{K_3} = H_{K_5} = H_{K_6} = 0.617716;$
 $H_{K_9} = H_{K_{10}} = 0.528.$

Результаты расчета количества информации в интервалах приведены в табл. 6.

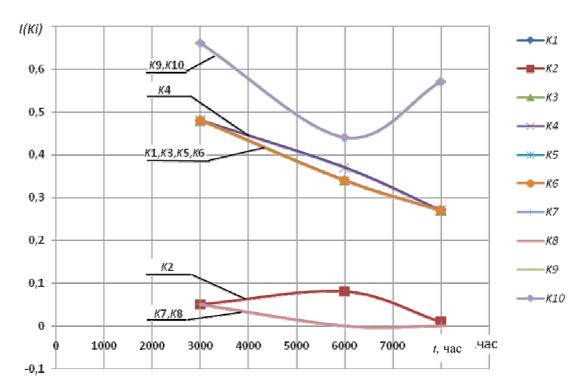


Рис. 2. Изменение информативности признаков состояния ГТП АЛ-31СТ по наработке

			Таблица 6
$I(K_i)$	t = 3000ч	t = 6000ч	t = 8000ч
$I(K_1)$	0,48	0,34	0,27
$I(K_2)$	0,05	0,08	0,01
$I(K_3)$	0,48	0,34	0,27
$I(K_4)$	0,48	0,37	0,27
$I(K_5)$	0,48	0,34	0,27
$I(K_6)$	0,48	0,34	0,27
$I(K_7)$	0,05	0	0
$I(K_8)$	0,05	0	0
$I(K_9)$	0,66	0,44	0,57
$I(K_{10})$	0.66	0.44	0.57

Таблица (

На основе проведенного исследования можно сделать следующие выводы:

- на всем интервале наработки 0...8000 ч наиболее информативными признаками являются K_9 (негерметичность) и K_{10} (неисправность датчиков (отказ каналов измерения));
- по мере наработки информативность всех признаков падает, за исключением признаков K_9 (негерметичность) и K_{10} (неисправность датчиков (отказ каналов измерения)), информативность которых до наработки 6000 ч падает на 34 %, а далее возрастает на 33 % относительно наработки $\tau = 6000$ часов. В данном случае снижение информативности признаков может быть связано с недостатком данных по отказам ГТП АЛ-31СТ;

• крайне низкую информативность имеют признаки K_7 (рассогласование задания и положения клапана перепуска воздуха (КПВ), α_3) и K_8 (рассогласование задания и положения направляющих аппаратов (НА) КВД, α_2). Также низкой является информативность признака K_2 (повышение температуры газов перед СТ (T_4) более чем на 20 °C при неизменном режиме ($N_{\rm cr}$ = const) и постоянной температуре на входе в двигатель (T_1 = const)).

С целью повышения достоверности оценки и прогнозирования состояния ГТП, в дальнейшем рекомендовано провести исследование эффективности методов факторного анализа, искусственных нейронных сетей и комбинированного применения методов параметрической диагностики состояния, включающей методы [2, 3]:

- диагностических матриц;
- наименьших квадратов, основанный на решении системы нормальных уравнений;
- наименьших квадратов, основанный на нелинейной оптимизации критерия состояния ГТП:
- идентификации, основанный на уравнивании методом наименьших квадратов;
- идентификации, основанный на уравнивании методом наименьших модулей.

	Вероятность распознавания состояния двигателя при n параметрах состояния												
Метод	n =	4	n=2		n=3		n=4		n=5		$P_{\Sigma}^{^{^{\Pi}}}$	$P_{\Sigma}^{\ m o}$	Э
	P_{Π}	P^{o}	$P^{{\scriptscriptstyle \Pi}}$	$P^{\rm o}$	P^{Π}	P^{o}	$P^{^{\Pi}}$	P^{o}	$P^{^{\Pi}}$	P^{o}	_	_	
A	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	4
Б	1,0	0,0	0,8	0,2	0,13	0,87	0,0	1,0	0,0	1,0	0,39	0,61	2
В	1,0	0,0	0,9	0,1	0,53	0,47	0,0	1,0	0,0	1,0	0,51	0,49	1
Γ	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	0,0	1,0	4
Д	0,6	0,4	0,23	0,77	0,13	0,87	0,0	1,0	0,0	1,0	0,19	0,81	3
Е	1,0	0,0	0,8	0,2	0,13	0,87	0,0	1,0	0,0	1,0	0,39	0,61	2

Таблица 7

Примечание: P_i^{π} , P_i° — вероятность правильной и ошибочной оценки состояния двигателя (i=1-3); $P_{\Sigma}^{\pi}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\pi}$; $P_{\Sigma}^{\circ}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\circ}$; $P_{\Sigma}^{\circ}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\circ}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\circ}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\circ}=\frac{1}{5}.\sum_{i=1}^{5}P_i^{\circ}=\frac{1}{5}.$

В табл. 7 приведен результат оценки эффективности перечисленных методов параметрической диагностики состояния, откуда видно, что, распознаваемость методов различна и зависит от количества параметров состояния и др.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Биргер И. А.** Техническая диагностика. М.: Машиностроение, 1978.
- 2. **Гишваров А. С., Габдуллин В. С., Нестеров А. В.** Диагностика состояния авиационных ГТД с применением нейронных сетей // Вестник УГАТУ. 2009. № 2(31). С. 25–31.
- 3. **Гишваров А. С., Приб И. В.** Метод выбора оптимальных условий параметрического диагностирования состояния авиационных ГТД // Вестник УГАТУ. 2009. № 2(31). С. 3–10.
- 4. **Машошин О. Ф.** Оптимизация процессов диагностирования авиационной техники с использованием критериев информативности // Сб. науч. тр. конф. ВВИА им. проф. Н. Е. Жуковского, 2002.
- 5. **Машошин О. Ф.** Интерпретация теории К.Шеннона в классификационных задачах информационной диагностики авиадвигателей // Науч. вестник МГТУ ГА № 80. Серия «Эксплуатация воздушного транспорта и ремонта АТ. Безопасность полетов», 2004.
- 6. **Пивоваров В. А., Машошин О. Ф.** Применение аппарата теории статистической классификации к задачам диагностирования авиационной тех-

ники // Науч. вестник МГТУ ГА № 20. Серия «Эксплуатация воздушного транспорта и ремонт АТ. Безопасность полетов». 1999.

- 7. Пивоваров В. А. Прогрессивные методы технической диагностики. М.: РИО МГТУГА, 1999.
- 8. Сборник задач по теории вероятностей, математической статистике и теории случайных функций / под ред. А.А.Свешникова. М.: Наука, 1970. 656 с.
- 9. **Сиротин Н. Н., Коровкин Ю. М.** Техническая диагностика авиационных газотурбинных двигателей. М.: Машиностроение, 1979.

ОБ АВТОРАХ

Гишваров Анас Саидович, проф., зав. каф. авиац. двигателей. Дипл. инженер-механик по авиац. двигателям (УАИ, 1973). Д-р техн. наук по тепл. двигателям летательн. аппаратов (УГАТУ, 1993). Иссл. в обл. надежности, ресурса и испытаний техн. систем.

Могильницкий Евгений Анатольевич, асп. той же каф. Дипл. инженер-механик по авиац. двигателям (УГАТУ, 2007). Иссл. в обл. надежности, ресурса и испытаний техн. систем.

Гиззатуллин Ильшат Ильфирович, студент той же каф. Иссл. в обл. надежности, ресурса и испытаний техн. систем.