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ABSTRACT

Classification of plasma electrolytic treatments (PET) is summarized with indication of main factors affecting the process
mechanism. Two distinct features defining two major PET trends are identified as formation of oxide layer on valve metals
and appearance of vapor gaseous envelope on non-valve metals. These elements appear to have the highest electrical
resistance in the circuit; therefore, their properties define the process flow. Brief description of the majority of known plasma
electrolytic treatments is given. Current challenges and advances in the process development include using advantages
of the both trends, e.g. polishing of valve metals and oxidation of non-valve metals. The process of electrolytic plasma
polishing for medical implants and surgical instruments is closely analyzed. Insights on further technology development
are proposed. These challenges include polishing of valve metals (Ti implants), inner surfaces (canulated screws) and
afterpolishing for additive manufacturing. The challenges can be resolved by using fluoride electrolytes, polishing head
tool and in combination with grinding, respectively.
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AHHOTALNUA

0606LieHa KnaccMdrKaLmMa 3NEKTPONUTHO-NNA3MEHHbIX TexHoNorui (3MT) ¢ ykazaHMEeM OCHOBHbIX GAaKTOPOB, BAUSIOLLMX
Ha MexaHM3Mm npouecca. BbiABieHbl ABe KaoUYeBble 0COBEHHOCTM NpoLlecca, onpeaenaiolwme A8a OCHOBHbIX TpeHAa B
3MT: bopMMpOBaHME OKCUAHOTO C/10A Ha BEHTU/IbHbIX METa/I/1aX M NOsIB/IEHME NaporasoBoi 060/104KN Ha HEBEHTU/IbHBbIX.
YKasaHHble 3/1eMeHTbl MMEelT Hambosibliee 3/1eKTPUYECKOe COMPOTUBAEHME B LENW, CnegoBaTeNbHO, MX CBOMCTBA
onpeaensaoT xo4 npouecca. pMBeaeHO KPaTKOE ONMCaHNE M3BECTHbIX 3NEKTPOUTHO-NIA3MEHHbIX TEXHONOTMIA. BbiaBEHbI
Hanpas/ieHMA 1 BbI30BbI 4/19 CO34aHMA HOBbIX 3/1EKTPOUTHO-NNA3MEHHbIX TEXHOIOTUIA, KOTOPbIE BKNOYAKOT 06beanHEHNE
[OCTOMHCTB 060MX TPEHAO0B, HAaNpPUMEp, NOIMPOBaHNE BEHTU/IbHbIX M OKCUAMPOBAHUE HEBEHTUIbHbIX MeTaN10B. [eTanbHo
PacCMOTPEH MPOLECC 3/NEKTPOIUTHO-MIa3MEHHOIO MOIMPOBAHUA 1A MEAMUMHCKMX MMIIAHTATOB M XMPYPrUUYecKmnx
MHCTPYMEHTOB. PacCcmoTpeHbl TeHAEHUMW AasbHEMLIEro pPasBUTUA TEXHOMOTUM, KOTOPblE BK/OYAIOT MO/IMPOBaHUE
M3LEMIA U3 BEHTUJIbHBIX META/I0B (TUTAHOBbIE MMM/IAHTATbI), BHYTPEHHWUX NOBEPXHOCTEN (KaHINIMPOBaHHbIE U34enus),
a TaKXKe NosMpoBaHME Kak NocTobpaboTKy AnA afaUTUBHBIX TEXHONOMMI. YKa3aHHble Npobaembl MOTyT BbITb peLleHbl ¢
npuMeHeHnem GToPUACOAEPHKALLMX SNEKTPONUTOB, NOANPOBANBbHOMO 31EKTPOAA-UHCTPYMEHTA M NPU KOMBUHUPOBAHUK C
MEeXaHUYEeCKMM WAN(OBaHMEM COOTBETCTBEHHO.

KJIIOYEBBIE CJIOBA

DNEeKTPONUTHO-NNA3MEHHbIE TEXHOIOTUMW; N1a3MEHHO-3/IEKTPONUTUYECKOE OKCUANPOBAHME; INEKTPOIMTHO-NNA3MEHHOe
nonnpoBaHue; TUTaH,; HepXXaBeklwlaa CTanb.

Introduction energy demand [3], owing to the method main
feature — use of relatively high voltages from 200
to 700 V. This high voltage applied within the
electrochemicalprocesspromoteslocalelectrolyte

Plasma electrolytic  treatments (PET)
gained significant attention in past two decades

as environmentally friendly alternatives to boili d microdisch Luti hin thi
conventional galvanic treatments [1, 2]. Being otling and microdischarge evolution within thin

more efficient in terms of surface modification ~Peiling film or surface oxide layer. Currently,
capabilities, this technology suffers from high tWo main trends in the plasma electrolytic
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processes are under research and development —
plasma electrolytic oxidation (PEO) and non-
oxidizing treatments with vapor-gaseous envelope
(VGE). This paper summarizes the recent
advances within the both trends with respect to
medical implant surface engineering.

1. Mechanism-based classification of plasma
electrolytic treatments

Analysis of current research in plasma
electrolysis shows wide variety of technologies
realized. However, the fundamental separation
into two trends can be clearly seen (fig. 1).
This separation originates in the semiconductor
properties of the oxides that are formed on the
surface of the substrate. Following the theory of
metal/oxide/electrolyte interface conductivity,
n-type oxides under anodic polarization of the
workpiece make this junction reversely biased;
therefore, the major voltage drop in the system
occurs over this region [4, 5]. As a result, the
electric properties of this interface define the
behavior of the whole system. Therefore, if the
valve metal oxides appear on the surface (ALO,,
TiO,, MgO, ZrO,, Zn0O), its evolution follows the
oxidizing trend. The mechanism of the oxide layer
formation is predominantly electrochemical;
this includes oxygen evolution due to the water
electrolysis, and further interaction of the oxygen
with the metal surface and metal ions coming
from the substrate anodic dissolution, resulting
in the oxide deposits on the surface [1]. On the

other hand, if p-type oxides appear in the surface
layer, the corresponding metal/oxide/electrolyte
junction is open, and the other PET feature
dominates in the system; this is the vapor gaseous
envelope [2]. The VGE formation is typical
for PETs of non-valve metals — steels, nickel,
chromium and copper alloys. Since the surface is
conductive, the current density comes to very high
values; this results in high Joule heat release that
creates a boiling envelope around the workpiece.
Under anodic polarization non-valve metals
can gain oxide layer on the surface, but it does
not qualitatively affect the process mechanism;
moreover, for the materials mentioned, it is
desired to have polished, not oxidized surface
in most applications. Usually, if the process is
properly optimized, the VGE featuring PET
treatment results in the non-oxidized surface; in
this case, the anodic dissolution dominates over
the oxide formation [6].

Like other electrochemical processes,
oxidizing plasma electrolytic treatments operate
within the temperature range defined by the
electrolyte being liquid, i.e. generally from —10
to 110 °C. The workpiece temperature also stays
in this range, and no heat treatment and phase
transformations occur within the substrate bulk
volume. Porous oxide layer is formed on the
substrate [7]. This can be beneficial for producing
coatings on nanostructured substrates [8].
However, when dealing with the VGE, various
types of boiling must be taken into account [9, 10].
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Fig. 1. Classification of plasma electrolytic treatments with indication of major factors
affecting the process mechanism

Puc. 1. Kinaccuduxanusi 31eKTpOTUTHO-TUIa3MEHHBIX TEXHOJIOTHH C YKa3aHHEM OCHOBHBIX (DakTOpPOB,
OMpeaesIoIINX MEXaHU3M TpoLecca
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If the VGE is not continuous, or it has bubble
boiling,theworkpiecetemperaturedoesnotexceed
significantly the electrolyte temperature, because
the heat transfer through the liquid bridges is
good. This can result in the surface cleaning
and polishing for anodic processes, and coating
deposition for cathodic processes [11, 12]. But
if the VGE is continuous, and it has film type of
boiling, this vapor-gaseous media has excellent
heat resistance; as a result, the energy coming from
Joule heat becomes shielded within the workpiece
which can be heated up to 1000 °C within 15-30s.
Both cathodic and anodic processes can be used
for case hardening as a result of quenching the
heated workpiece, and for surface layer saturation
with alloying elements. It should be pointed out
that the VGE can exist over the valve oxide layer,
and both mechanisms must be taken into account.

The work electrode polarity is another key factor
separating plasma electrolytic treatments. Coming
fromthetreatmentname,plasmaandelectrochemical
processes must be taken into account, and these
processes significantly differ on anode and cathode
[13, 14]. Cathode is the source of electrons, which
come into gas via thermionic and other types of
emission; the electrons get accelerated with the
applied electric field, and the electron avalanche
ionizes the gas. In the case of cathodic treatments,
metal workpiece acts as a classical source of
electrons, and the spark discharge appears in the
VGE. As a result, the cathode workpiece surface
alwaysreceives spark/arc discharge impactresulting
in the increase of roughness [15]. However, in the
case of anodic treatments, no obvious sources
of electrons exist in the electrolytic cathode.
According to [13], hydrated electrons can serve
this task, and the discharge is considered as glow
discharge with electrolytic cathode [16]. Since the
number of such hydrated electrons is much less
than the number of free electrons in metal, arc
discharge is never obtained with anodic treatments.

From the electrochemical point of view,
anode is the place where electrons come to the
outer circuit. Consequently, metal ions come
to the electrolyte; these and other cations can
travel through the electrolyte to cathode and,
as a result of reduction, gain the electrons back
and deposit as a surface layer. Moreover, the
electrolyte anions can travel to anode to form
surface deposits. Depending on the ion reactivity
(electrode potential), either water or dissolved
electrolyte components participate in electrode
half reactions; for electrolytes usually used in
plasma electrolytic treatments, it is water which
produces hydrogen on cathode and oxygen on
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anode [1]. Therefore, for oxidizing and polishing
technologies, anodic polarization is critically
important; for deposition technologies, cathodic
polarization is essential.

From the variety of the PET technologies,
each one uses specific features of the process
mechanism. Plasma electrolytic  oxidation
provides protective oxide ceramic coatings on Al,
Ti, Zr, Mg alloys [17-21]. Complex electrolyte
compositions and introduction of nanoparticles
widens the application of PEO coatings from
wear and corrosion resistant to colored decorative
and biocompatible [22-29]. Other advances in
PEO concern electrical regime — progressing
from DC, to AC (50 Hz), then to pulsed bipolar
and currently to «soft sparking» regime providing
compact coatings [30, 31]. Electrolytic plasma
polishing (EPPo) is a technology which regains
attention from the scientific community [32].
Being introduced into Russian industry for
stainless steels and copper alloys [33, 34], now
it is adapted for titanium [35]. Electrolytic
plasma surface cleaning takes advantage of
anodic dissolution, hydrodynamic action of
VGE and electric discharge machining effect for
cathodic process [11, 36-38]. Cathodic plasma
electrolytic deposition combines electrochemical
and microdischarge action resulting in coatings
with interesting properties [39—41]. Anodic and
cathodic plasma electrolytic case hardening and
saturation provide quenching of workpieces
and formation of nitride, carburized, boronized
and other layers increasing the surface hardness
[42—-46]. Anodic processes usually form oxide
layers which should be removed prior the
workpiece use. The two trends create challenges
that are now being addressed by researchers,
i.e. PEO of non-valve substrates and polishing
of wvalve metals. For non-valve substrates,
aluminate and titanate electrolytes are typically
used, or Al (or Ti) top pre-coating is sputtered
or electrodeposited and then subjected to PEO
[47, 48]. For polishing of Ti or Al, electrolytes
and electrical regimes which suppress oxygen
evolution, e.g. NH,F and KF for Ti are used [49].

With respect to medical implants and surgical
instruments, the process of electrolytic plasma
polishing is of significant interest. This process can
actasafinalstep forpolishingtitaniumand stainless
steel implants and surgical tools. Let us consider
further discussion of this method capabilities.

2. Electrolytic plasma polishing of medical
implants and surgical instruments

The electrolytic plasma polishing process is
a balance between the anodic dissolution and the
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oxide formation; this balance is shifted towards
the dissolution by the action of the vapor gaseous
envelope which prevents the precipitation of the
oxides on the treated surface [6]. Fig. 2 shows
the surface topography for the samples treated
at different voltages, with and without the VGE
(350 and 9 V), and at the same current density
of 0.3 A cm™. According the Faraday’s law, the
electrochemical processes are the same, but the
effect is different; therefore, it is induced by the
VGE. Moreover, no electric discharge craters
appear on the surface, suggesting a volume
type of the discharge — glow discharge with
electrolytic cathode.

As shown in Ref. [50], the EPPo process is
successfully applied for finishing of the medical
implants and surgical instruments (fig. 3 and 4).
This research group works on industrial
applications of the EPPo; therefore, significant
information regarding the electrolytes and
treatment regimes is omitted, probably, as
confidential information [32]. However, as
other publications show, ammonia salts with
concentration 4-7% are usually applied. The
most widely used component is ammonium

sulfate for EPPo of stainless steel, nickel, chrome
and copper alloys [34, 51]. Ammonium fluoride
is used for titanium alloys polishing [35].

Current challenges and advances in the
EPPo technology are summarized in Fig. 5. This
includes polishing of valve metals, e.g. Ti and
Al This is resolved by the appropriate electrolyte
composition, usually by introducing chlorides
and fluorides. Polishing of the inner surfaces can
be achieved by using a head tool which is run
through the inside of the tube [52, 53]. Also, it
is possible to polish non-valve metal coatings on
organic materials [54].

EPPo can act as a good option for the
surface finishing of the workpieces produced
by additive technologies, e.g. selective laser
melting (SLM) [55, 56]. Typically, the roughness
average Ra after this type of manufacturing is
5-6 um. The capabilities of the EPPo reach Ra
below 0.05 um. However, this is only possible
with the initial roughness of 0.2-0.4 um.
After SLM, the direct use of EPPo provides
Ra from 1.2 to 2.0 um; better polishing needs
mechanical treatments, e.g. grinding, to decrease
the roughness into the 0.2-0.4 um range.

i1 4% BET

Fig. 2. Surface plane SEM images of the stainless steel samples before (a) and after EPPo treatments
during 15 min. at different voltages U: b — 350 and ¢ — 9 V [6]

Puc. 2. POM-¢otorpadun moBepXHOCTH HEPKABEIOIIEH CTaIM nepes (a) ¥ MOoCIIe SIEKTPOIUTHO-TIIA3MEHHOTO
MOJMPOBAHMS B TEUCHUE |5 MUHYT NP pa3iMYHbIX HanpskeHusix: b —350 u ¢ — 9 B [6]

Before EPPo

After EPPo

a

b

Fig. 3. Appearance of tweezers before (a) and after (b) EPPo applied for cleaning and polishing

Puc. 3. BuemHnit By nuHIeTa 10 (a) u ociie () AIMeKTPOTUTHO-TIIIA3MEHHOTO TTOJIMPOBAHUS
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No EPPo After EPPo

a

Fig. 4. CoCr knee cap, right-hand side part after EPPo (a); Ti6Al4V, investment cast (left), electropolished
(center), electrolytic plasma polished (right) (b) [50]

Puc. 4. CoCr neranb su01IpOTE3a KOsteHa, paast yacthb nocie D111 (a); nerans u3z Ti6Al4V, nocne muThs
(cieBa), mociie IEKTPOXUMHUUECKOTO ToupoBanus (B rieHTpe), nocie DI1I1 (cnpasa) (b) [50]
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Fig. 5. Current advances and challenges in the EPPo technology

Puc. 5. HepCHeKTI/IBLI Pa3BUTHUA U BBI3OBbI B Pa3BUTHUU TEXHOJIOTHUHU 3JICKTPOJIMTHO-IIJIA3BMECHHOI'O ITOJIMPOBAHUA

Conclusion

In the past 20 years, plasma electrolytic
treatments found their applications in various
areas of engineering. Two distinct features of the
PETs — formation of oxide layer on valve metals
and appearance of vapor gaseous envelope on
non-valve metals defined current and prospective
applications. Joining of the benefits of the both
features constitute some of the current challenges
in the technology. Challenges in electrolytic
plasma polishing for biomedical applications
have been identified as: polishing of the valve
metals, inner surfaces and workpieces after
additive manufacturing comprise the advances in
the technology. Finally, it is expected that plasma
electrolytic technologies will find more industrial
applications for surface finishing of medical
implants and surgical instruments.
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