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ABSTRACT
Boron carbide coating by pulsed electron evaporation is a modern technology used to create durable 
and wear-resistant coatings. The work demonstrates the possibility of applying a boron carbide 
coating to the WC-8%Co hard alloy using the method of pulsed electron evaporation of a target, 
with preliminary preparation of the sample. The microstructure was analyzed by scanning electron 
microscopy and X-ray phase analysis. It was determined that after coating the surface of WC-8%Co, 
a coating containing the BC5 phase is formed. The hardness of the coating was 30±1.1 GPa. The 
results obtained open up prospects for using this method for applying protective, wear-resistant 
coatings to the surface of hard alloy products.
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АННОТАЦИЯ
Нанесение покрытий из карбида бора методом импульсного электронного испарения (ИЭИ) 
представляет собой современную технологию, используемую для создания прочных и износо- 
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стойких покрытий. В работе продемонстрирована возможность нанесения покрытия из карби-
да бора на твердый сплав ВК8 методом импульсного электронного испарения мишени, с пред-
варительной подготовкой образца. Проведен анализ микроструктуры методом сканирующей 
электронной микроскопии и рентгенофазовый анализ. Определено, что после нанесения по-
крытия на поверхности ВК8 формируется покрытие, содержащее фазу ВС5. Твердость покры-
тия составила 30±1,1 ГПа. Полученные результаты открывают перспективы использования 
данного метода для нанесения защитных, износостойких покрытий на поверхность изделий 
из твердого сплава.

КЛЮЧЕВЫЕ СЛОВА 
Карбид бора; твердые сплавы; электронно-лучевое испарение; сеточный плазменный катод; 
износостойкие покрытия; термическое испарение.

Введение

Покрытия карбида бора обладают высо-
кой твердостью, уступая только таким ма-
териалам, как алмаз и кубический нитрид 
бора (при низких и умеренных температу-
рах), в то время как при температурах выше  
1100 °C твердость карбида бора превышает 
твердость упомянутых материалов, которые 
разрушаются чуть выше этой температуры 
[1–3]. Износостойкость и стойкость к корро-
зии позволяет использовать данный материл 
для изготовления сопел пескоструйных ап-
паратов, фильер, матриц [4–6].

Применение карбида бора довольно ши-
роко и связано напрямую его достоинства-
ми такими как эрозионные характеристики, 
низкая сорбционная емкость к водороду, 
устойчивость при высоких энергетических 
нагрузках позволяют использовать его в ка-
честве защитного покрытия в термоядерных 
установках [7].

Наиболее широко используемые методы 
нанесения покрытий, такие как дуговое и 
магнетронное распыление [8, 9], обладают 
рядом технологических ограничений, среди 
которых одной из ключевых проблем являет-
ся сравнительно низкая скорость осаждения 
покрытий. В частности, при дуговом испа-
рении карбида бора возникают трудности, 
связанные с устойчивым инициированием 
и стабилизацией катодных пятен, что при-
водит к нестабильности процесса и ухуд-
шению качества покрытий. В случае магне-

тронного распыления накапливание зарядов 
на поверхности мишени карбида бора при-
водит к возникновению дуговых разрядов, 
локальному перегреву и деградации покры-
тия. Эти ограничения существенно снижают 
эффективность традиционных методов при 
осаждении покрытий на основе сложных 
композиционных или плохо проводящих ма-
териалов [10].

Формирование покрытий из карбида бора 
связано с рядом трудностей, обусловленных 
физическими свойствами этого материала.  
В частности, высокая температура плавле-
ния и термостабильность затрудняют про-
грев частиц до состояния, обеспечивающего 
хорошее спекание или сцепление с подлож-
кой [11, 12]. Низкая адгезия связана с тем, 
что карбид бора практически не проявляет 
пластичности при столкновении с подлож-
кой и, следовательно, плохо деформируется 
для формирования прочного контакта [13].

Одним из перспективных методов физи-
ческого осаждения покрытий в вакууме яв-
ляется импульсное электронное испарение 
(ИЭИ) [14]. Этот способ основан на испа-
рении материала-мишени под воздействи-
ем электронного пучка высокой плотности 
энергии, формируемого в импульсном режи-
ме. В отличие от дугового и магнетронного 
распыления, метод импульсного электрон-
ного испарения обеспечивает существенно 
более высокую скорость нанесения покры-
тий, достигающую десятков микрометров в 
минуту. Особенностью данного метода явля-
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ется возможность эффективного испарения 
как электропроводящих, так и диэлектри-
ческих материалов, включая тугоплавкие и 
композиционные системы. Это становится 
возможным благодаря высокой локальной 
мощности импульсного электронного пуч-
ка (до 107 Вт/см2) и равномерному распре-
делению энергии по поверхности мишени. 
Кроме того, импульсный режим позволяет 
существенно снизить тепловую нагрузку на 
подложку, термические повреждения, что 
особенно важно при нанесении покрытий на 
основе карбида бора.

Целью работы является исследование 
структуры и свойств покрытия на основе кар-
бида бора, сформированного на поверхности 
сплава ВК8 методом импульсного электрон-
ного испарения твердотельной подложки.

1. Методика эксперимента
Формирование покрытия методом им-

пульсного электронного испарения мишени 

осуществляли, используя источник элек-
тронов «СОЛО» с сеточным плазменным 
катодом на основе дугового разряда низ-
кого давления [15, 16]. Указанный плазмен-
ный источник электронов обладает рядом 
конструктивных и функциональных пре-
имуществ, среди которых можно выделить 
относительную простоту конструкции, от-
сутствие нагревательных элементов, а также 
высокую плотность энергии электронного 
пучка, достигающую ~100 Дж/см2. Одной из 
ключевых характеристик источника является 
слабая взаимозависимость между основны-
ми параметрами пучка, что обеспечивает бо-
лее эффективные условия испарения. Кроме 
того, система электропитания плазменного 
катода позволяет в широких пределах ва-
рьировать параметры импульсов – длитель-
ность, частоту следования и энергетическую 
мощность в пределах одного импульса, что 
дает возможность тонкой регулировки энер-
гетического воздействия на мишень [17, 18]. 

Рис. 1. Схема установки «СОЛО», модифицированной для испарения мишени при помощи электронного пучка:  
1 – поджигающий электрод; 2 – катод дугового разряда; 3 – полый анод; 4 – перераспределяющий электрод;  

5 – эмиссионная сетка; 6 – эмиссионный электрод; 7 – извлекающий электрод; 8 – соленоид; 9 – пучок электронов;  
10 – диафрагма; 11 – подложка; 12 – мишень; 13 – коллектор; 14 – вакуумная камера

Fig. 1. The scheme of the «SOLO» installation, modified for evaporation a target with an electron beam: 1 – ignition electrode; 
2 – arc discharge cathode; 3 – hollow anode; 4 – redistribution electrode; 5 – emission grid; 6 – emission electrode; 7 – extraction 

electrode; 8 – solenoid; 9 – electron beam; 10 – diaphragm; 11 – substrate; 12 – target; 13 – collector; 14 – vacuum chamber
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Схема экспериментального стенда пред-
ставлена на рис. 1. Извлечение электронного 
пучка 9 осуществлялось с границы эмисси-
онной плазмы, образованной в результате 
горения дугового разряда между катодом 2 
и эмиссионной сеткой 5. Электроны ускоря-
лись постоянным электрическим полем, при-
ложенным между эмиссионным 6 и извле-
кающим 7 электродами. Сформированный 
электронный пучок 9 транспортировался 
к мишени 12 с помощью ведущего магнит-
ного поля, создаваемого соленоидами 8, где 
нагревал и испарял материал мишени. Пары 
испаряемого материала осаждались на под-
ложки 11, закрепленные на диафрагме 10.

Мишень 12 представляла собой цилиндр 
высотой 60 мм, выполненный из карбида 
бора с небольшим содержанием борида же-
леза (до 3%). Перед воздействием электрон-
ного пучка поверхность мишени очищалась 
изопропиловым спиртом. В качестве под-
ложек 11 использовались образцы твердого 
сплава ВК8. Для обеспечения высокого ка-
чества осаждаемого покрытия поверхность 
подложек предварительно полировалась, по-
сле чего очищалась в ультразвуковой ванне 
в изопропиловом спирте. Затем подложки 
фиксировались на диафрагме 10, выполнен-
ной из нержавеющей стали и расположенной 
в вакуумной камере на расстоянии 30 мм  
от поверхности мишени.

Процесс нанесения покрытия включал 
две стадии: 1) очистку и нагрев поверхности 
подложек ионами азота в тлеющем разряде; 
2) импульсное электронно-пучковое испаре-
ние мишени карбида бора и осаждение паров 
на подложки. 

Для проведения первой стадии диа-
фрагма 10 с закрепленными подложками 11 
подключалась к катоду источника питания 
тлеющего разряда Ugd, в то время как ано-
дом служила вакуумная камера 14. Предва-
рительно камера откачивалась до давления 
порядка 10–3 Па, после чего давление повы-
шалось до 60 Па за счет напуска азота, и осу-
ществлялось зажигание тлеющего разряда 
при напряжении горения 1 кВ и токе 0,3 А. 
Очистка поверхности подложек тлеющим 
разрядом проводилась в течение 15 минут. 
За это время диафрагма с подложками нагре-
валась до температуры 460 °С, измеренной с 
помощью термопары.

Проведение второй стадии обработки 
осуществлялось при давлении в вакуум-
ной камере 2·10–2 Па. Генерация импульс-
ного электронного пучка выполнялась при 
следующих параметрах: ток дугового раз-
ряда Id = 80 А, ускоряющее напряжение  
U0 = 13 кВ, длительность импульса  
τ = 500 мкс, частота следования импульсов  
ν = 4 с–1. Осциллограммы токов и напряже-
ния приведены на рис. 2.

Рис. 2. Осциллограммы режима облучения:  
Id – ток плазменного катодного разряда; I g – ток в ускоряющем промежутке; U g – ускоряющее напряжение 

Fig. 2. Oscillograms of irradiation mode:  
Id – plasma cathode discharge current; Ig – current in the accelerating gap; Ug – accelerating voltage
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В течение первых 200 мкс импульс ток в 
ускоряющем промежутке Ig (рис. 2) состав-
лял величину 40 А, что соответствует режи-
му прогрева поверхности мишени. На после-
дующем интервале длительностью 300 мкс 
регистрируется характерный рост ускоряю-
щего тока, достигающего к концу импульса 
значения 140 А. Рост тока свидетельствует о 
переходе процесса в режим интенсивного ис-
парения материала мишени и формировании 
плотной паровой-плазменной фазы в уско-
ряющем промежутке. Таким образом, энер-
гия в одном импульсе составляла величину  
≈500 Дж при средней мощности 1,8 кВт. 
Процесс осаждения покрытия продолжал-
ся 30 минут, к концу этого времени тем-
пература подложек составила величину  
280 °С.

В табл. 1 приведены основные параме-
тры тлеющего разряда и электронного пучка, 

при которых осуществлялось формирование 
покрытий.

Фазовое состояние исследовали методами 
рентгеноструктурного анализа на дифракто-
метре XRD 6000 (Shimadzu, Киото, Япония) 
в геометрии Брэгга–Брентано с использо-
ванием излучения CuKα (λ = 1,5418 нм); 
диапазон углов дифракции составлял  
2θ = 15–90°, скорость сканирования –  
2 град/мин. Структуру и элементный состав 
изучали методами сканирующей электрон-
ной микроскопии (прибор SEM 515 Philips).

Микротвердость поверхности опреде-
ляли на твердомере ПMT-3 при нормаль-
ной нагрузке на индентор 500 мН (ЛОМО, 
Санкт-Петербург, Россия) [19].  Шерохо-
ватость поверхности и профиль поверхно-
сти образцов определяли на профилометре 
TRIBOtechnic в соответствии с ГОСТ 2789-
73 [20].

Таблица 1. Режимы работы установки «СОЛО», модифицированной для электронно-лучевого испарения

Table 1. Operating modes of the SOLO installation modified for electron beam evaporation

Продолжи- 
тельность  

процесса, с /
Duration  

of process, s

Кол-во 
импульсов, N /
The number of 

pulse, N

Давление  
в камере, Па /
Pressure in the 
chamber, Pa

Напряжение, 
кВ /

Voltage, kW

Частота 
импульсов, 

c–1 /
Pulse 

frequency, s–1

Макс. 
тем-ра 

подложки, 
Tmax, °С /
Maximum 
substrate 

temperature, 
Tmax, °C

Подготовка 
поверхности /

the surface 
preparation

900 – 60 1 – 460

Электронно-
лучевое 

испарение /
electron beam 
evaporation

0,0005 7000 3·10–2 13 4 280
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2. Результаты и их обсуждение
Сформированы, методом распыления 

импульсным электронным пучком катода из 
карбида бора, покрытия на подложках твер-
дого сплава ВК8. Результаты сканирующей 
электронной микроскопии поверхности под-

ложки, сформировавшейся после распыления 
катода, представлены на рис. 3. Элементный 
анализ данных капель показал наличие бора 
(64,6 вес.%), углерода (20,3 вес.%), железа  
(7 вес.%) и кислорода (7,5 вес. %), содержание 
никеля и хрома не превышает 0,5% (рис. 3, б).

Рис. 3. Электронно-микроскопические изображения структуры:  
а – поверхности карбида вольфрама с покрытием карбид бора, в – частицы порошка,  

полученные при распылении катода и осажденные на поверхность камеры;  
б, г – энергетические спектры, полученные с участков, обозначенных значком «+» (а)  

и прямоугольником (в). В таблицах (б, г), показан элементный состав  
анализируемых участков материала

Fig. 3. Electron-microscopic images of structure:  
а – surfaces of tungsten carbide coated with boron carbide, в – particles of powder obtained  

by spraying the cathode and deposited on the surface of the chamber; б, г – energy spectra obtained  
from areas marked «+» (a) and rectangle (в). In the tables (б, г), the elemental composition  

of the analyzed portions of the material is shown
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Одной из проблем при формировании 
на поверхности материала тугоплавких по-
крытий является образование капельной 
фракции. Исследуемое в настоящей работе 
покрытие содержит сферические частицы 
капельной фракции (рис.  4, а). Максималь-
ный размер капель составил 26 мкм, мини-
мальный 0,03 мкм. Средний размер капель 
составил 2 мкм. Отчетливо видно, что боль-
шая часть капель имеет размер до 5 мкм. 
Одна из причин формирования капель на 
поверхности, кроме недостаточной темпера-
туры, заключается в методе нанесения, при 
котором происходит импульсное нагревание 
и испарение с поверхности катода материала 
и его дальнейшее распыление, при котором 
происходит столкновение частиц и их объ-
единение в капли.

После проведения процесса испарения 
поверхность мишени оказалась покрыта 
мелкодисперсными частицами исходного 
материала, не испарившимися в процессе и 
представлявшими собой порошкообразный 
осадок (рис.  3, в). Исследование этого по-
рошка не выявило дополнительных приме-
сей (рис. 3, г). 

Методами рентгенофазового анализа вы-
полнены исследования фазового состава и 
состояния структуры порошка, мишени и 
сформированного покрытия (рис. 5, табл. 2). 

Для исследования методом рентгенофазово-
го анализа были приготовлены следующие 
образцы: плоский образец, вырезанный из 
катода, порошок, собранный со стенок ва-
куумной камеры установки «СОЛО», и об-
разец подложки с нанесенным покрытием. 
Рентгенофазовый анализ покрытия выявил 
содержание BC5 (47,4 мас.%) и α-WC (52,6 
мас.%). Карбид бора в данной стехиометрии 
является более дисперсным и напряженным, 
по сравнению с карбидом бора в стехиоме-
трии B13C2, который содержится в мишени. 
Фаза BC5 является более плотноупакован-
ной – размер параметров кристаллической 
решетки и областей когерентного рассеяния 
уменьшается в 2 и 3 раза, соответственно. 
Кобальт в составе подложки ВК8 не ме-
тодами рентгенофазового анализа не об-
наруживается в виду малой концентрации  
в сплаве.

Поперечный шлиф исследуемого образца 
ВК8 с покрытием из карбида бора представ-
лен на рис. 6. Микрорентгеноспектральный 
анализ показал наличие в покрытии воль-
фрама 85,3 вес.%, кобальт 6,87 вес.%, данные 
элементы относятся к материалу подложки. 
Элементы, входящие в состав покрытия – 
бор 2,28 вес.%, и углерод 5,55 вес.% , кото-
рый входит в состав как покрытия, так и под-
ложки.

Рис. 4. Оптическое изображение поверхности образца ВК8 после нанесения покрытия карбида бора (а), 
распределение капель по размерами (б)

Fig. 4. Optical image of the sample`s surface of WC-8%Co after applying a boron carbide coating (а),  
distribution of droplets by size (б)



MaTeD

94 2025. Т. 7, № 4(23)

Рис. 5. Рентгенофазовый анализ (порошка), мишени B4C, поверхности образца после нанесения покрытия

Fig. 5. X-ray images of boron carbide coated WC-8%Co, goal B4C (powder is taken) and powder deposited  
on the walls of the chamber samples

Таблица 2. Результаты рентгенофазового анализа карбида бора с покрытием ВК8, мишени B4C и порошка, 
нанесенного на стенки камеры образцов

Table 2. Results of X-ray phase analysis of boron carbide with WC-8%Co coating, B4C target and powder deposited  
on the walls of the sample chamber

Образец / 
The sample

Фаза /  
The phase

Содержание фазы, 
масс. % /  

Phase content, mass. 
%

Параметры 
решетки, Ǻ /  

Lattice constant, Ǻ

Размер областей 
когерентного 

рассеяния, d, нм / 
The size of coherent 

scattering regions, d, nm

Напряжения, 
∆d/d*10–3 / 

The tension, 
∆d/d*10–3  

Порошок / 
The powder

B13C2 99,73 a = 5,608, 
с = 12,100 50,91 1,699

FeB 0,27
a = 5,558, 
b = 2,956, 
с = 4,098

18,54 1,886

Мишень B4C / 
The target B4C

B13C2 97,40 a = 5,600, 
с = 12,075 86,44 0,127

FeB 2,60
a = 5,549, 
b = 2,946, 
с = 4,091

56,17 0,828

Покрытие / 
The coating

BC5 47,4 a = 2,537, 
c = 6,450 27,00 1,408

α-WC 52,6 a = 2,889, 
c = 2,828 27,97 1,954
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Рис. 6. СЭМ-изображение поверхности поперечного излома (поверхность указана белой стрелкой) (а)  
и энергетические спектры с участка, выделенного на (а) прямоугольником (б)

Fig. 6. SEM-image of the cross-sectional surface (surface indicated by a white arrow) (а)  
and energy spectra from the section marked on (а) by the rectangle (б)

Рис. 7. Профиль поверхности исследуемого образца после нанесения покрытия

Fig. 7. Surface profile of the test sample after coating application
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Профиль поверхности системы «покры-
тие/подложка» приведен на рис. 7. Отчетли-
во видно, что покрытие нанесено равномер-
но по всей поверхности образца. Отдельные 
пики свидетельствуют о наличии на поверх-
ности покрытия частиц капельной фрак-
ции. Шероховатость поверхности покры-
тия, выявленная на основании 5 измерений:  
Rz = 0,52±0,4 мкм, Ra = 0,1±0,2 мкм.

Микротвердость покрытия, выявлен-
ная при нормальной нагрузке на индентор  
500 мН, составила 30±1,1 ГПа.

Выводы
Продемонстрирована возможность фор-

мирования покрытия из карбида бора на 
поверхности твердого сплава ВК8 методом 
электронно-пучкового испарения материала 
катода. Методами рентгенофазового анали-
за выявлено формирование в покрытии кар-
бида бора ВС5. Отмечается формирование 
капельной фракции с неоднородным эле-
ментным составом.  Размер капель лежит  
до 5 мкм (более 80%). Согласно дан-
ным профилометрии покрытие нанесе-
но равномерно, шероховатость составила  
Rz = 0,52±0,4 мкм, Ra = 0,1±0,2 мкм. Микро-
твердость покрытия 30±1,1 ГПа.
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