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ABSTRACT
This investigation provides problems of electrical discharge machining within aero-engine 
manufacturing industry. Common issues in serial process are significant tool-electrode wear, forming 
the recast layer, changing geometry of tool side surface and relatively low process performance. 
Among these the relatively low performance is the most economically significant. An automation of 
electrical discharge machining using a robotic complex is proposed applying five electrical discharge 
machine tools including die-sinking machine and hole drilling machine. The optimal configuration 
is based on simulation modelling results aiming most equal load ratio across machine tools. Machine 
tools were selected based on requirements for productivity and accuracy. A system of quick-release 
automated fastening and a system for linear displacement of the manipulator robot were developed 
to service the machine tools. Designed robotic complex has a significant increased productivity and 
reduced requiring number of production stuff needed for five machine tools.
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АННОТАЦИЯ
Рассмотрены проблемы, присущие электроэрозионной обработке в авиамоторостроитель-
ной отрасли. Выявлены такие распространенные проблемы серийной технологии, как зна-
чительный износ электрод-инструмента, формирование измененного (дефектного) слоя, из-
менение торцевой поверхности инструмента и относительно низкая производительность 
обработки. Среди них наиболее экономически значимой является относительно низкая про-
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изводительность. Выдвинуто предложение по роботизации электроэрозионной обработки 
для сокращения времени на вспомогательные операции. Предложены две компоновки робо-
тотехнического комплекса, включающего пять единиц технологического оборудования, в том 
числе копировально-прошивные станки и станки типа супердрель и один робот-манипулятор.  
По результатам имитационного моделирования определена оптимальная компоновка с наи-
более равномерной загрузкой технологического оборудования. Подобрано технологическое 
оборудование, исходя из требований по производительности и точности. Для обслуживания 
технологического оборудования разработана система быстросъемной автоматизированной ос-
настки и система линейных перемещений робота-манипулятора. Полученная схема робототех-
нического комплекса позволила существенно повысить производительность и сократить число 
производственных рабочих, необходимого для обслуживания пяти единиц технологического 
оборудования. 

КЛЮЧЕВЫЕ СЛОВА 
Электроэрозионная обработка; ряды перфораций; роботизация технологического процесса. 

Введение

На текущий момент в авиадвигателе-
строении электроэрозионная обработка 
(ЭЭО) занимает около 7% от всех операций 
механической обработки деталей, и ее доля 
продолжает расти. Данный метод позволяет 
обрабатывать даже труднообрабатываемые 
материалы, такие как жаропрочные нике-
левые сплавы. Актуальность повышения 
производительности технологического про-
цесса обработки первой ступени турбины 
высокого давления (ТВД) и других деталей 
и сборочных единиц, входящих в горячую 
часть газотурбинного двигателя, подчер-
кивается возрастающим объемом заказов и 
национальной политикой роботизации ма-
шиностроительного комплекса экономики  
[1–8]. 

Для исследования потенциала роботиза-
ции технологического процесса (ТП) ЭЭО 
выбрана деталь-имитатор рабочий лопат-
ки ТВД, обладающей всеми типами отвер-
стий перфорации, приведенными на рис. 1. 
Деталь-имитатор рабочей лопатки первой 
ступени ТВД (рис. 2) обладает всеми кон-
структивными элементами, приведенными  
на рис. 1.

Рис. 1. Типы отверстий перфорации

Fig. 1. Perforation holes types

Анализ литературы [9–17] и производ-
ства на предприятиях выявил следующие 
проблемы:

1. Значительный износ трубчатого элек-
трод-инструмента (ТЭИ) – до 200% относи-
тельно снятого материала.
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2. Формирование измененного (дефект-
ного) слоя.

3. Изменение формы электрод-инстру-
мента и, как следствие, конусность получа-
емых отверстий.

4. Относительно низкая производитель-
ность обработки единичным электрод-ин-
струментом на станках типа супердрель.

Патентный поиск [18–20] выявил раз-
работки в области роботизации электро-
эрозионной обработки. Это говорит о вос-
требованности дальнейшей автоматизации 
данного технологического процесса в целом 
и интерес к ней со стороны производителей 
оборудования ввиду спроса со стороны по-
требителей электроэрозионной оборудова-
ния. 

Проблема невысокой производитель-
ности может быть решена комбинирова-
нием обработки единичным ТЭИ и гре-
бенчатым электрод-инструментом (ГЭИ), 
которым возможно изготовление ряда соос-
ных отверстий диаметром 0,3–4,0 мм за один  
проход.

В табл. 1 приведен результат анализа со-
става отверстий детали-имитатора. Общее 
число отверстий 110, из которых в составе 

соосных рядов перфорации 71 (65%), а несо-
осных – 39 (35%). В среднем на изготовления 
одного отверстия на станке типа супердрель 
с рабочей подачей 1,0–1,5 мм/с затрачивает-
ся 1 мин машинного времени. 

Рис. 2. Деталь-имитатор рабочей лопатки

Fig. 2. Rotor blade imitator

Таблица 1. Расчет машинного времени на изготовление рядов отверстий

Table 1. Estimation of holes series machining time

№ ряда / 
Series No.

Геометрия ряда / 
Series geometry

Диаметр, мм / 
Diameter, mm

Число отверстий /
Holes amount

Операционное время, мин / 
Machining time, min

1 Соосный / coaxial 0,55 13 13

2 Соосный / coaxial 0,55 14 14

3 Соосный / coaxial 0,55 14 14

4 Несоосный / non-coaxial 0,4 15 15

5 Несоосный / non-coaxial 0,4 11 11

6 Соосный / coaxial 0,3 30 30

7 Несоосный / non-coaxial 0,3 12 12

8 Несоосный / non-coaxial 0,6 1 1
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1. Технико-экономическое обоснование 
эффективности

Для реализации параллельной обработ-
ки нескольких заготовок спроектирована 
компоновка робототехнического комплекса 
(РК) (рис. 3). В РК входит три станка типа 
супердрель и два копировально-прошивных 
станках. Робот-манипулятор с двойным за-
хватным устройством перемещает заготовки, 

закрепленные в оснастке. Исходная схема об-
работки предполагает ручное закрепление и 
снятие заготовок в станках типа супердрель.  
Циклограммы на рис. 4 и 5 демонстрируют, 
что при сокращении затрат вспомогательно-
го времени до tвсп = 1 мин на смену заготовок 
в технологическом оборудовании новый ТП 
повышает загрузку станков типа супердрель 
до 97%, а копировально-прошивных станков 
до 91%. 

Рис. 3. Эскиз планировки робототехнического комплекса

Fig. 3. Robotic complex draft

Рис. 4. Циклограмма изготовления отверстий перфорации: исходный технологический процесс

Fig. 4. Timing diagram of holes machining in original process

Рис. 5. Циклограмма изготовления отверстий перфорации в робототехническом комплексе

Fig. 5. Timing diagram of holes machining in robotics complex
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Сравнение с исходной схемой ручного 
закрепления и снятия заготовок в станках 
демонстрирует рост производительности в 
2–2,5 раза. 

2. Конструкция вспомогательных 
устройств 

Частая смена лопаток в станках сопря-
жена с большими затратами времени на 

операции установа, снятия и перемещения 
заготовки между станками. Использование 
системы приспособлений быстрой смены за-
готовок (zeropoint system) сокращает время 
на переналадку и базирование (рис. 6).

Спроектирован комплект быстросъемной 
оснастки на рис. 7, зажимаемой в техноло-
гическом оборудовании пневматическим 
устройством. 

      

Рис. 6. Пневматическое устройство системы zeropoint
Fig. 6. Pneumatic device in zeropoint system

Рис. 7. Оснастка для закрепления заготовки

Fig. 7. Equipment for workpiece fastening
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Досягаемость робота-манипулятора всех 
единиц технологического оборудование реа-
лизуется системой линейных перемещений, 
изображенной на рис. 8. В состав линейной 
системы входит: 1 – стальной профиль; 2 – 
направляющая; 3 – рейка; 4 – ролик; 5 – блок 
смазки зубчатой передачи; 6 – вал-шестерня; 
7 – угловой редуктор; 8 – каретка; 9 – сер-
вомотор Максимальная линейная скорость 
робота-манипулятора по системе линейных 
перемещений составляет 2 м/с. 

Рис. 8. Система линейных перемещений

Fig. 8. Linear movement system

Рис. 9. Стол буферный

Fig. 9. Buffer table

Также РК оснащается установкой для 
контрольного пролива и столом-буфером 
(рис. 9). На установке контрольного пролива 
осуществляет измерение параметров проли-
ва жидкости после изготовления очередного 
ряда отверстий на предмет неполного про-
жига. Стол-буфер служит для хранения про-
межуточного и завершенного производства.

Вывод

Изучен технологический процесс ЭЭО, 
сложности его применения для сверления от-
верстий перфорации. Рассмотрены примеры 
роботизации ЭЭО, на основе чего выдвинуто 
предложение роботизации электроэрозион-
ного оборудования путем распараллелива-
ния ТП и автоматизации загрузки-выгрузки 
заготовок. Таким образом, спроектирован-
ный РК состоит из трех станков типа су-
пердрель, двух копировально-прошивных 
станков, установки контрольного проли-
ва, робота-манипулятора и двух столов- 
буферов. РК позволяет высвободить двух 
производственных рабочих и одного кон-
тролера, а производительность возрастает  
в 2–2,5 раза. 
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