ЕСТЕСТВЕННЫЕ НАУКИ

УДК 54

ИЗВЛЕЧЕНИЕ БИОАКТИВНЫХ ВЕЩЕСТВ ИЗ ЗЕЛЕНОГО ЛИСТОВОГО ПОКРОВА ФУНДУКА В ЭКСТРАКТОРЕ СОКСЛЕТА

A. Ф. Зайнутдинова 1 , Н. В. Кострюкова 2 , М. Миччо 3

¹ zainutdinova.aisylu.f@yandex.ru, ² kostrukova_n@mail.ru, ³ mmiccio@unisa.it

^{1, 2} Уфимский государственный авиационный технический университет (УГАТУ)
³ Университет Салерно, Фишано (Салерно), Италия

Аннотация. Проведена экстракция биоактивных веществ из зеленой листовой шелухи фундука в аппарате Сокслета с использованием в качестве растворителя этанола. Из 16,5 г сырья было экстрагировано 2 г веществ в виде растворенных веществ. Рассчитан материальный баланс системы.

Ключевые слова: биоактивные вещества; экстракция; листовой покров фундука.

ВВЕДЕНИЕ

Фенольные соединения — наиболее распространенный класс биологически активных веществ растительного происхождения, которые обладают низкой токсичностью, положительно влияют на физиологические процессы в организме человека, повышая его устойчивость. Многие полимерные фенольные соединения проявляют антиоксидантные и противовоспалительные свойства, что обуславливает растущий интерес к поиску их новых источников для фармацевтической промышленности [1].

Побочные продукты орехов являются особенно богатыми источниками природных фенольных соединений с потенциальной биологической активностью.

Таким образом, широкий спектр биологического действия на живые организмы определяет актуальность и интерес к изучению процесса извлечения фенольных соединений из производственных остатков в виде листовой шелухи фундука.

ПРОВЕДЕНИЕ ЭКСТРАКЦИИ

Методы экстрагирования растительного сырья в производстве фитопрепаратов подразделяют на периодические и непрерывные. Циркуляционная (последовательная) экстракция в аппарате Сокслета, относящаяся к периодическим методам, имеет следующие преимущества:

- 1) использование небольшого количества экстрагента;
- 2) создание высокой разности концентраций на границе раздела фаз (на сырье каждый раз поступает чистый экстрагент);
 - 3) сокращение общей длительности экстрагирования;
 - 4) достижение высокого выхода действующих веществ [2].

Фундук (Corylus avellana L.), относящийся к семейству Betulaceae, является одним из самых популярных древесных орехов, потребляемых во всем мире, занимая второе место по производству древесных орехов после миндаля.

Исследования проведены в рамках научной стажировки в университете города Салерно (Università degli studi di Salerno) в лаборатории кафедры Промышленной инженерии (Departimento di Ingegneria Industriale DIIN).

Образцы прицветников, используемые в данной работе, были собраны непосредственно с деревьев в ореховом саду в Пиццолано (Фишано, регион Кампания, Италия) 5 августа 2021 года в виде зеленой листовой шелухи и хранились в камере с контролируемой влажностью. Содержание влаги, измеренное на лабораторных весах Kern, составило 54,49 мас.%.

Экстракцию проводили в аппарате Сокслета, который оснащен электрическим нагревателем Falc мощностью 250 Вт, последовательно извлекая биологически активные соединения 100 % этанолом. Процедура извлечения биологически активных соединений состояла в следующем: навеску зеленой листовой шелухи массой 16,5 г без измельчения в наперстке из целлюлозы помещали в гильзу экстрактора, а в колбу для кипячения жидкости добавляли 500 мл органического растворителя этанола. Экстрактор с заданной температурой 100°С закрывали и устанавливали в сушильный шкаф. Аппарат Сокслета нагревали в течение примерно 15 минут, а затем проводили 10 циклов экстракции продолжительностью около 10 минут каждый. После завершения процесса экстрактор охлаждался до комнатной температуры. Полученный экстракт объемом 360 мл был окрашен в светло-зеленый цвет, что свидетельствует об эффективности процесса.

Отработанная мокрая шелуха после экстракции взвешивалась на аналитических весах, после чего высушивалась под вытяжным шкафом и повторно взвешивалась, для определения массы сухой шелухи. Проба экстракта также взвешивалась, затем определялась плотность жидкости и масса компонентов — этанола и воды, которая была извлечена из образцов шелухи, путем расчета с использованием правила смешивания. Тест был продублирован для необходимой проверки.

Схема материальных потоков эксперимента приведена на рис. 1.

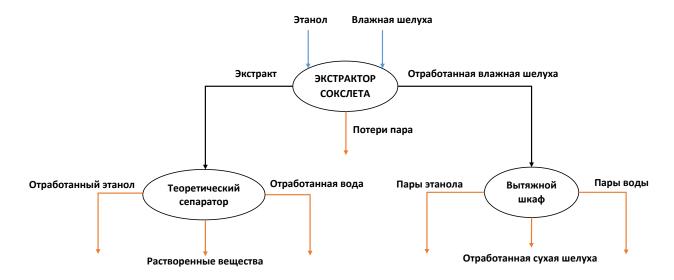


Рис. 1. Схема материальных потоков системы

Результаты взвешиваний и расчетов представлены в табл. 1.

Таблица 1

Материальный баланс системы

Приход, г	
Мокрая шелуха, в т.ч.	
– влага	8,99
– сухая шелуха	7,51
Этанол	394,50
Итого:	411,00
Расход, г	
Отработанная мокрая шелуха, в т.ч.	
– отработанная сухая шелуха	5,51
– вода	0,55
– этанол	35,95
Потери пара, в т.ч.	
– этанол	77,91
– вода	4,14
Экстракт, в т.ч.	
– вода	4,30
– этанол	280,64
– растворенные вещества	2,00
Итого:	411,00

Таким образом, в результате последовательной экстракции сырья зеленого листового покрова фундука в аппарате Сокслета этанолом объемом 500 мл было извлечено 2 г веществ. К полимерным фенольным соединениям относятся дубильные вещества (танины), лигнин, меланин, гуминовые кислоты. Возникает следующая задача — качественное и количественное определение фенольных соединений в экстракте, которую следует решить в дальнейшем.

ЗАКЛЮЧЕНИЕ

В данной статье проведена экстракция биоактивных веществ из зеленой листовой шелухи фундука в аппарате Сокслета с использованием в качестве растворителя этанола. Разработана схема материальных потоков системы и рассчитан материальный баланс системы. Из 16,5 г сырья было экстрагировано 2 г веществ в виде растворенных веществ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абашкин И.А., Елеев Ю.А., Глухан Е.Н., Кучинский Е.В., Афанасьев В.В., "Методы экстракции биологически активных веществ из растительного сырья (обзор)" // Химия и технология органических веществ, 2021. − № 2 (18). − С. 43−59.
- 2. Тихомирова Л.И., Базарнова Н.Г., Бондарев А.А., Пономарёва Я.В., Миронова С.О., "Выбор оптимальных условий накопления и извлечения фенольных соединений из биотехнологического сырья представителей Iris L." // Химия растительного сырья, 2020. № 2. С. 249—260. DOI: 10.14258/jcprm.2020026333.

ОБ АВТОРАХ

ЗАЙНУТДИНОВА Айсылу Фларитовна, магистрантка 2-го курса ФЗЧС, ФГБОУ ВО «Уфимский государственный авиационный технический университет».

КОСТРЮКОВА Наталья Викторовна, кандидат химических наук, доцент каф. БПиПЭ, ФГБОУ ВО «Уфимский государственный авиационный технический университет».

МИЧЧО Микеле, профессор, Университет Салерно.

METADATA

Title: Extraction of bioactive substances from the green leafy cover of hazelnuts in the Soxlet extractor.

Authors: A. F. Zainutdinova ¹, N. V. Kostryukova ², M. Miccio ³

Affiliation: 1,2 Ufa State Aviation Technical University (UGATU), Russia.

³ University of Salerno, Fishano (Salerno), Italy

Email: 1 zainutdinova.aisylu.f@yandex.ru, 2 kostrukova_n@mail.ru, 3 mmiccio@unisa.it

Language: Russian.

Source: Molodezhnyj Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), no. 1 (26), pp. 96-99, 2022. ISSN 2225-9309 (Print).

Abstract. The extraction of bioactive substances of green leaf husk of hazelnuts in the Soxlet apparatus using ethanol as a solvent was carried out. 2 g of substances were extracted from 16.5 g of raw materials. The material balance of the system is calculated.

Key words: bioactive substances; extraction; hazelnut leaf cover.

About authors:

ZAINUTDINOVA, Aisylu Flaritovna, postgraduate student 2 year, Ufa State Aviation Technical University.

KOSTRYUKOVA, Natalia Viktorovna, Associate Professor, Ufa State Aviation Technical University.

MICCIO, Michele, Professor, Dept. of Industrial Engineering, University of Salerno.