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Аннотация. В статье рассматриваются подходы к применению тензодатчиков в 
биомедицинской инженерии. Тензодатчикам находят применение в различных 
медицинских устройствах и системах, таких как протезирование, мониторинг 
физиологических параметров и диагностика. Проанализированы принципы работы 
тензодатчиков, их конструктивные особенности, а также преимущества и ограничения 
при использовании в биомедицинских приложениях. Установили их практическое 
применение и конструктивный расчет в датчиках давления, а также рассмотрели 
процесс измерения силы в мышцах. 

Ключевые слова: тензодатчик; пьезорезистивный эффект; тензочувствительность; мо-
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ВВЕДЕНИЕ 

Компактность, универсальность и, что особенно важно, высокая точность тензодатчиков 

обеспечивают им широкое применение в различных областях медицины, машиностроения и 

т. д. Тензодатчики прочно вошли в арсенал медицинских технологий, играя ключевую роль в 

мониторинге физиологических показателей, разработке протезов нового поколения, диагно-

стике различных заболеваний и создании так называемых «умных» медицинских устройств.  

Принцип работы тензодатчиков основан на изменении их электрического сопротивления 

под воздействием механической деформации. Это изменение сопротивления напрямую кор-

релирует с величиной приложенной нагрузки, что позволяет с высокой точностью измерять 

механические воздействия.  

Такая способность делает тензодатчики незаменимыми во всех случаях, когда необходимо 

контролировать состояние биологических тканей, имплантатов или любых внешних 

устройств, взаимодействующих с человеческим организмом [4].  

ОБЗОРНАЯ ЧАСТЬ 

Тензодатчик – это гибкий резистивный чувствительный элемент, сопротивление которого 

пропорционально приложенному механическому напряжению (величине деформации). Все 

тензодатчики построены на основе пьезорезистивного эффекта, и для них справедливо следу-

ющее соотношение в уравнении (1): 

𝑑𝑅

𝑅
= 𝑆𝑒𝑒, 

(1) 

где 𝑆𝑒 – коэффициент тензочувствительности материала, а е – величина деформации. Для 

большинства материалов S ≈ 2, за исключением платины, для которой S ≈ 6. 

При небольших изменениях сопротивления металлического провода, не превышающих 2 

% (что справедливо для большинства случаев), справедливо следующее соотношение, пред-

ставленное в уравнении (2): 
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𝑅 = 𝑅0(1 + 𝑥), (2) 

где 𝑅0 – сопротивление тензодатчика в ненагруженном состоянии, a 𝑥 = 𝑆𝑒. Для полупровод-

никовых материалов величина тензочувствительности зависит от концентрации легирующих 

компонентов. Величина сопротивления уменьшается при сжатии и увеличивается при растя-

жении. В табл. 1 приведены характеристики некоторых тензодатчиков. 

 
Таблица 1  

Характеристики тензодатчиков 

Материал 
Тензочувстви-

тельность, 𝑆0 

Сопротивление, 

Ом 

Температурный коэффи-

циент сопротивления, 

(∁° ∙ 106) 

57 % Cu-43 % Ni 2 100 108 

Сплавы платины 4-6 50 2,160 

Кремний -100+150 200 90,000 

 

Проволочный тензодатчик представляет собой резистор, наклеенный на гибкую подложку, 

которая, в свою очередь, прикрепляется на объект, где измеряется сила или напряжение. При 

этом должна обеспечиваться надежная механическая связь между объектом и тензочувстви-

тельным элементом, в то время как провод резистора должен быть электрически изолирован 

от объекта. Коэффициенты теплового расширения подложки и провода должны быть согласо-

ваны. 

Для изготовления тензодатчиков подходят многие материалы, но самыми распространен-

ными из них являются сплавы: константам, нихром, advance и karma. Диапазон сопротивлении 

от 100 Ом до несколько тысяч Ом. Для получения хорошей чувствительности датчик должен 

иметь длинные продольные участки и короткие поперечные (рис. 1), это делается для того, 

чтобы чувствительность в поперечном направлении не превышала 2 % от продольной чув-

ствительности.  

Для измерения напряжений в разных направлениях меняется конфигурация датчиков. 

Обычно тензодатчики включаются в мостовые схемы Уитстона. Следует отметить, что полу-

проводниковые тензочувствительные элементы обладают довольно сильной чувствительно-

стью к изменениям температуры, поэтому в интерфейсных схемах или в самих датчиках необ-

ходимо предусматривать цепи температурной компенсации [1].  

 

 
Рис. 1. Проволочный датчик напряжения на гибкой подложке [1] 

 

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ ТЕНЗОМЕТРИЧЕСКИХ ДАТЧИКОВ В БИОМЕДИЦИНЕ 

Мониторинг артериального давления, где тензодатчики интегрируются в тонометрах для 

непрерывного мониторинга давления в кровеносных сосудах и производят оценку силы и 

напряжения мышц. Дыхательные усилия и контроль работы легких также измеряются данным 

методом.  
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В протезировании и ортезировании датчики позволяют измерять нагрузку на протез, что 

помогает адаптировать его работу под индивидуальные потребности пациента, также они 

необходимы для передачи тактильных ощущений и при контроле движения в бионических 

протезах. В ортопедических устройствах тензодатчики помогают корректировать нагрузку на 

суставы и мышцы.  

Имплантируемые устройства: в кардиостимуляторах применяют тензометрию для кон-

троля работы сердца и адаптацию стимуляции под потребности организма, датчики имплан-

тируются в кровеносных сосудах, мочевом пузыре для непосредственного измерения данных. 

Тензодатчики систематизируют по следующим приложениям: 

- тензодатчики применяются в ортопедии и протезирование, участвуя в оценке эффектив-

ности реабилитации пациента после травм или операций, отслеживая изменение нагрузки; 

- в кардиологии тензометрия применяется в контроле работы сердца, регистрируя сокра-

щения миокарда и изменения давления крови в сосудах; 

- диагностика и лечение онкологических заболеваний также не обходится без тензодатчи-

ков. Их способность регистрировать минимальные изменения в тканях организма полезна для 

выявления ранней стадий опухолей; 

- такая область медицины, как офтальмология, использует тензодатчики в измерении внут-

риглазного давления, что является важным аспектом диагностики глаукомы и других глазных 

заболеваний; 

- лабораторная диагностика также не обходится без применения тензометрических датчи-

ков, их интегрируют в биосенсоры для детекции молекул, что ускоряет процесс лабораторного 

тестирования. 

На территории Российской Федерации производятся тензометрические датчики, которые 

активно применяются в медицинских целях, например: 

1. Научно-производственная фирма «Тензо-М» изготавливает тензодатчики для измерения 

давления в жидкостях и газах, которые используются в медицинских системах, таких как ап-

параты искусственной вентиляции легких [3]. Внешний вид представлен на рис. 2. 

 

 

Рис. 2. Тензорезисторный датчик М100 [3] 

 

2. «Тензорез» один из флагманов на рынке измерительного оборудования. Осуществляет 

производство тензорезисторных датчиков в таких областях, как фармакология, химическая и 

пищевая индустрия [8].  

3. Общество с ограниченной ответственностью «Нейроассистивные технологии». Разви-

вает реабилитационное оборудование и датчики, в том числе тензодатчики для мониторинга 

состояния пациентов. К таким устройствам можно отнести оборудование Нейро ФЭС – 

устройство для функциональной электрической стимуляции мышц [7].  

На рис. 3 изображен внешний вид устройства. 
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Рис. 3. Нейро ФЭС [7] 

 

КОНСТРУКТИВНЫЙ РАСЧЕТ ДАТЧИКА ДАВЛЕНИЯ ПРЯМЫХ ИЗМЕРЕНИЙ 

Большинство датчиков давления для прямых измерений давления имеют эластичную диа-

фрагму, а ее смещение или деформация определяются чувствительным элементом, таким как 

тензодатчик или переменная емкость. 

Величина деформации диафрагмы из-за приложенного давления нелинейна, ее можно счи-

тать линейной, когда диафрагма тонкая, а деформация мала по сравнению с толщиной диа-

фрагмы. В круглой плоской диафрагме с зажатыми краями смещение диафрагмы на расстоя-

нии r от центра определяется как (3): 

𝑧(𝑟) =
3(1 − 𝜇2)(𝑅2 − 𝑟2)∆𝑃

16𝐸𝑡3
, 

(3) 

где  𝜇  – коэффициент Пуассона; 

 R – радиус диафрагмы; 

 𝑡 – толщина диафрагмы; 

 ∆P – разность давлений; 

 E – модуль Юнга. 

Смещение максимально в центре, что можно записать следующим уравнением (4): 

𝑧(𝑟) =
3(1 − 𝜇2)𝑅4∆𝑃

16𝐸𝑡3
. 

(4) 

Деформация диафрагмы в радиальной составляющей 𝜀𝑟 и тангенциальной составляющей 

𝜀𝑡 выражается уравнениями (5) и (6): 

𝜀𝑟(𝑟) =
3∆𝑃(1 − 𝜇2)

8𝑡2𝐸
(𝑅2 − 3𝑟2), 

(5) 

𝜀𝑡(𝑟) =
3∆𝑃(1 − 𝜇2)

8𝑡2𝐸
(𝑅2 − 𝑟2). 

(6) 

Эти компоненты деформации равны в центре, то есть 

𝜀𝑡(0) = 𝜀𝑟(0) =
3∆𝑃(1 − 𝜇2)

8𝑡2𝐸
. 

(7) 

Рис. 4 показывает распределение смещения диафрагмы и двух компонентов деформации.  
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Рис. 4. Деформация тонкой круглой диафрагмы с защемленным краем [2] 

 

Объемное смещение, которое определяется как изменение объема, вызванное деформа-

цией диафрагмы, определяется уравнением (8): 

𝑉 =
𝜋(1 − 𝜇2)𝑅6∆𝑃

16𝐸𝑡3
. 

(8) 

В уравнениях 4 – 7 размерность ΔP и E отменяют друг друга, а все оставшиеся переменные 

R, r и t имеют размерность длины. Таким образом, пока для этих переменных последовательно 

используется одна и та же единица, в этих уравнениях можно использовать любую единицу, 

такую как м, см или мм. 

Данные уравнения дают основу для конструкции датчика. Смещение и деформации диа-

фрагмы при заданном давлении зависят от геометрии диафрагмы. Как видно из уравнений 4 – 

7, чувствительность датчика определяется, когда заданы геометрия и компоненты материала 

диафрагмы. Однако если толщина изменяется пропорционально радиусу, уравнение 7 не ме-

няется. Отношение смещения в центре к радиусу, Z(0)/R, также остается неизменным, пока R/t 

остается постоянным. Таким образом, датчики давления разных размеров, имеющие одинако-

вую чувствительность, могут быть сконструированы с использованием одного и того же ма-

териала и геометрически подобной конструкции.  

Пока чувствительность одинакова, меньшая диафрагма выгодна, так как объемное смеще-

ние уменьшается пропорционально третьей степени радиуса, если R/t не изменяется, как видно 

из уравнения 8. Очень маленькие датчики давления были изготовлены с помощью технологии 

микрообработки кремния. Нижний предел размера определяется уровнем шума из-за броунов-

ского движения молекул. Этот эффект, однако, незначителен в диапазонах физиологического 

давления, даже для диафрагмы диаметром 0,1 мм. 
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Тензометрический тип широко используется. Этот принцип использует металлические и 

полупроводниковые элементы, в которых электрическое сопротивление изменяется в зависи-

мости от деформации. Хотя связь между электрическим сопротивлением и деформацией не-

линейная, связь можно считать линейной, когда деформация меньше 0,5 %. Если длина и ее 

изменение равны L и ΔL, а электрическое сопротивление и его изменение равны R и ΔR, их 

отношение, G, определяется как 

𝐺 =
∆𝑅

𝑅⁄

∆𝐿
𝐿⁄

, 
(9) 

и является постоянным. Это называется коэффициентом тензочувствительности. Коэффици-

ент тензочувствительности G для металлов составляет около 2,0 и зависит только от измене-

ния размеров, в то время как полупроводники имеют большие коэффициенты тензочувстви-

тельности, между −100 и 140, где добавляется изменение сопротивления из-за пьезорезистив-

ного эффекта. 

Как упоминалось ранее, чувствительность датчика давления мембранного типа можно оце-

нить по его геометрии и материалам, используемым в нем. Например, если используется 

стальная диафрагма, то модуль Юнга составляет примерно 2 ∙  1011 Н/м2 , коэффициент 

Пуассона равен 0,3, и если радиус равен 5 мм, а толщина диафрагмы равна 0,1 мм, то из урав-

нения 4 смещение в центре оценивается примерно в 0,007 мм для приложенного давления 13 

кПа (100 мм рт. ст.). Когда для обнаружения смещения используется металлический тензодат-

чик длиной 10 мм, деформация составляет около 0,07 %, а если коэффициент тензодатчика 

равен 2, то отношение изменения электрического сопротивления составляет 0,14 %. Мост с 

этими датчиками дает выходное напряжение около 7 мВ для 13 кПа (100 мм рт. ст.) при воз-

буждении 5 В. Объемное смещение также оценивается примерно в 0,7 мм3 для изменения дав-

ления 13 кПа (100 мм рт. ст.) из уравнения 8. 

Когда катетер и датчик давления подключены к пациенту, все поверхности, контактирую-

щие с жидкостями организма, должны быть стерильными. Однако неудобна частая стерили-

зация всего узла датчика. Чтобы избежать этого, используется одноразовый купол, в котором 

тонкая пластиковая мембрана отделяет диафрагму датчика давления от жидкостей организма 

внутри купола. 

На рис. 5 показан датчик сердечно-сосудистого давления, в котором полупроводниковый 

тензодатчик балочного типа используется для обнаружения смещения металлической диа-

фрагмы. 

 

 

Рис. 5. Датчик давления с использованием кремниевого тензодатчика балочного типа [2] 
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ИЗМЕРЕНИЯ СИЛЫ В ИЗОЛИРОВАННЫХ МЫШЦАХ  

В физиологических исследованиях мышц сокращение измеряется с помощью датчика 

силы. Из-за трудностей в подготовке большого образца обычно используются небольшие изо-

лированные мышечные полоски длиной всего несколько мм [2]. Маленький образец выгоден, 

поскольку он поддерживает свою активность только за счет диффузионного поступления кис-

лорода из окружающего раствора. Датчик силы для такого измерения должен быть чувстви-

тельным, малоподатливым, с малым дрейфом и иметь быстрый отклик. 

В работе [2] был использован датчик силы с консолью Чепмена, выполненный из плекси-

гласа размером 1,5 × 3,0 × 26,0 мм. Деформация консоли была обнаружена пьезоэлектриче-

ским тензодатчиком, и он дал линейный выход от 10−7 до 10−1 Н с резонансной частотой 1,1 

кГц и податливостью 2 мм/Н. Тот же кантилевер с пьезорезистивным тензодатчиком дал ре-

зонансную частоту 460 Гц, податливость 8 мм/Н, а уровень шума и дрейфа был менее 10−7 Н. 

Датчик силы консольного типа с емкостным обнаружением, показанный на рис. 6, был 

описан Хамреллом в 1975 году [6]. Кантилевер, изготовленный из инвара, был приклеен к 

кварцевому диску на одном конце, а на другом конце имел воздушный зазор 0,025 мм между 

кантилевером и вакуумно-напыленной пленкой на кварцевом диске. Расчетное перемещение 

кантилевера составило менее 0,25 мм, резонансная частота – 600 Гц, а отношение сигнал/шум 

– 100 при уровне силы выше 10−2 Н [2]. 

 

 

Рис. 6. Датчик силы консольного типа с емкостным обнаружением [2] 

 

Для обнаружения небольшого смещения кантилевера или пружины также использовались 

оптические методы. На рис. 7 показана изометрическая система регистрации силы. Препарат 

мышцы удерживается пинцетом на одном конце, а другой конец удерживается трубкой с за-

жимом, который соединен с парой пластинчатых пружин из фосфористой бронзы. Трубка 

несет лопасть, которая частично блокирует световой луч. Характеристики системы: вес по-

движной части – 300 мг, диапазон измерения – от 5 × 10−6 до 9 × 10−3Н, податливость – 18 

мм/Н и постоянная времени – 0,02 с. 
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Рис. 7. Система регистрации изометрической силы [2] 

 

Для обнаружения малых смещений с помощью светового луча также использовались па-

раллельно расположенные решетки с равноотстоящими чередующимися прозрачными и не-

прозрачными полосами. На рис. 8 показан пример. 

 

 

Рис. 8. Методы обнаружения малых сил с использованием световых лучей и решеток [2] 

 

Имеем два луча для дифференциальной работы, чтобы компенсировать колебания источ-

ника света. Один луч проходит через две фиксированные решетки, расположенные под пря-

мым углом, а другой луч проходит через две параллельные решетки, в которых одна из них 

движется относительно другой. 

Используемые решетки имели 250 линий/дюйм, а сила варьировалась от 10−7до 2 × 10−5Н 

с податливостью 160 мм/Н и резонансной частотой 105 Гц. Миннс и Франц также разработали 

датчик силы, использующий решетки, как показано на рис. 9 (а), который имел диапазон из-

мерения до 3 × 10−4Н с податливостью 33 мм/Н и резонансной частотой 400 Гц. На рис. 9 (б) 

показан метод монтажа компонентов в корпус микроскопа [2]. 
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Рис. 9. Небольшой датчик силы, использующий одиночный световой луч (а) и метод монтажа компонентов в 

корпусе микроскопа (б) [2] 

 

ЗАКЛЮЧЕНИЕ 

Тензодатчики – один из ключевых компонентов современной биомедицинской инженерии, 

обеспечивающий высокоточные измерения деформаций, напряжений и механических нагру-

зок внутренних органов и тканей человека. В рамках этой статьи был выполнен анализ основ-

ных направлений их использования в медицинских приборах и системах мониторинга здоро-

вья. Особое внимание было уделено применению тензодатчиков для отслеживания мышечной 

активности и диафрагмы.  

Описанные исследования подтверждают, что использование тензометрических сенсоров в 

медицине помогает улучшить точность диагностических процедур. Однако для дальнейшего 

развития в этой области необходимы дополнительные исследования, направленные на улуч-

шение характеристик датчиков, таких как чувствительность, стабильность и долговечность, а 

также на поиск новых областей применения [5]. 
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