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Аннотация. В статье рассматриваются вопросы математического моделирования 
динамических характеристик гидропривода рулевой поверхности самолёта. Задачей 
является замена исходного объекта математической моделью с дальнейшим 
проведением численного эксперимента на ЭВМ в среде MathCAD. Исследуется 
влияние безразмерных постоянных времени на качество переходных процессов.  
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С появлением электронных вычислительных машин (ЭВМ) и программ для проведения 

численного и математического моделирования в научно-исследовательских и опытно-

конструкторских работах сократило время разработки гидроприводов и их стоимость. Стало 

возможным проводить точные аналитические расчеты, анализировать сложные 

динамические процессы, изменять входные параметры и имитировать предельные режимы 

работ гидросистемы без создания многочисленных физических прототипов. Математическая 

модель работает по одному алгоритму, на уравнения которых не влияют еже секундные 

изменения среды. 

Моделирование позволяет анализировать поведение рулевых поверхностей в различных 

условиях полета, настраивать управления для стабильности, манёвренности и точности 

управления самолетом.  

В данной статье в качестве объекта моделирования рассматривается следящий 

гидравлический привод рулевой поверхности самолёта или же гидроусилитель. 

Гидравлическими усилителями мощности (или гидроусилителями) называют устройства, 

предназначенные для преобразования сигнала управления (входное перемещение или 

усилие) в перемещение выходного звена гидродвигателя. Увеличение передаваемой 

гидроусилителем мощности происходит за счет энергии гидравлического источника питания 

(насосной установки, гидроаккумулятора и др.), подводимой с помощью рабочей жидкости 

под давлением [1]. 

Схема следящего гидропривода (далее по тексту СГП) рулевой поверхности самолёта 

приведена на рисунке 1. 
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Рис. 1. Схема СГП рулевой поверхности самолёта 
 
Коэффициенты передачи, обратной связи, усиления и двигателя для схемы (Рис. 1.) подобраны 

следующим способом: 
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где Кв – коэффициент передачи, L1, L2, L3 – линии 1,2,3 на рис. 1. 
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где Кос – коэффициент обратной связи, L1, L2, L3 – линии 1,2,3 на рис. 1. 

Данный СГП будет описывать система из трёх уравнений: первое уравнение - баланс сил, 

основанная по второму закону Ньютона, и два уравнения баланса расходов, представленных 

ниже: 
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Для возможности быстрого и точного расчета приведём систему к безразмерному виду. 

Безразмерные характеристики позволяют сравнить и использовать результаты 

моделирования для различных систем, независимо от их размеров и физических величин. 

Для чего введены следующие коэффициенты: 

  (4) 

где Tv – время запаздывания, Pp – давление поршня, V0 – объем гидроцилиндра, E – модуль 

объемной упругости, Q – расход жидкости. 
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  (5) 

где Tm – время инертности, m – масса, c – жесткость пружины. 

  (6) 

где Tgpl-2 – время гидроперехода, F1-2 – сила, уmax – максимальный ход, Q – расход жидкости. 

Тогда система уравнений СГП рулевой поверхности самолёта в безразмерном виде 

примет следующий вид: 
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Результат численного моделирования в безразмерном виде представлена универсальное 

поведение системы (Рис. 2.). Система имеет незначительную инерционность, постепенно 

переходящая к устойчивому режиму. По графику видно, что система имеет колебания, 

присущие ПИД регулятору. График отражает переходные процессы перемещения поршня, 

скорости поршня и изменения давления в поршневой полости.  

 

 
Рис. 2. Безразмерная характеристика рулевой поверхности самолета 

 

Существует множество критериев устойчивости (Гурвица, Боде, Найквиста и т.д.). При 

математическом моделировании границу устойчивости возможно найти путём изменения 

исследуемого параметра, при этом графики переходных процессов примут характерный вид 

устойчивых колебаний. 
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Теоретически коэффициент демпфирования, от которого и зависит устойчивость системы 

является функцией от постоянных: 
gp

oc
m
T

K
T= .  

Проведём численный эксперимент по определению данной зависимости. 
 

 

Рис. 3. Обобщённая граница устойчивости СГП 

 

Граница устойчивости представляет собой прямую (с учётом погрешности вычислений 

до 0,001), соответственной зависимость 
gp

oc
m
T

K
T=  является линейной (Рис. 3.). 

Граница под позиции 1 (Рис. 3.), показывает устойчивость системы и к быстрому 

переходу без колебаний. Граница под позиции 2 (Рис. 3.), показывает неустойчивость 

системы (колебательному). Линия тренда по точкам, показывает что наша модель склонна к 

устойчивому режиму. 

В данной статье представлены результаты математического моделирования следящего 

гидропривода рулевой плоскости самолёта. Результаты моделирования представлены в виде 

графиков в безразмерном в виде по которых показывается поведение исполнительных 

механизмов, перерегулируемость и стабилизации системы. В ходе численного эксперимента 

аналитически выявлена форма зависимости коэффициента демпфирования от комплекса 

постоянных. 

Таким образом, математический эксперимент СГП рулевой полости самолета позволяет 

ускорить синтез и анализ систем автоматического регулирования, а также сократить 

издержки при разработке подобных систем. 
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