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Аннотация. В работе рассмотрены способы получения высокоэнтропийных покрытий. 
Показаны основные составы высокоэнтропийных сплавов и покрытий из них, а также 
способы их нанесения. Среди систем высокоэнтропийных покрытий, которые в основ-
ном осаждают магнетронным распылением, наиболее изученным является сплав Кан-
тора. 
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ВВЕДЕНИЕ 

Одной из главных задач материаловедения является создание материалов с улучшенным 

комплексом свойств. Для решения этой задачи изготавливаются сплавы на основе одного эле-

мента (например, Fe, Ti, Al, Ni и др.), легируемые дополнительными элементами для достиже-

ния необходимых физико-механических и эксплуатационных свойств. Такие сплавы успешно 

применяются в различных отраслях промышленности в зависимости от условий работы. Но 

поскольку научно-технический прогресс идет вперед, увеличиваются и требования к характе-

ристикам материалов, применяемых в новых продуктах. Так, одним из возможных решений 

данной задачи является создание высокоэнтропийных сплавов (ВЭС). Данные сплавы пред-

ставляют собой новый класс материалов, состоящий, как минимум, из пяти элементов, равно-

мерно распределенных в кристаллической решетке. Название «высокоэнтропийные» связано 

с высоким уровнем энтропии (неупорядоченности) в их структуре, что обеспечивает улучшен-

ную термическую стабильность фазового состава и структурного состояния, а также способ-

ствует повышению механических, физических и химических свойств сплава [1]. За последнее 

время проведены множество экспериментов с различными системами ВЭС, однако наиболее 

перспективные исследования касаются применения высокоэнтропийных сплавов в качестве 

защитных покрытий и пленок [2]. Использование покрытий из ВЭС вместо объемных сплавов 

значительно снижает стоимость изделий, а также расширяет область применения [3]. В связи 

с этим исследование и разработка высокоэнтропийных покрытий являются актуальной зада-

чей. 

СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ ВЭС ПОКРЫТИЙ 

В работе [4] приведены небольшой обзор и анализ публикаций по способам нанесения пле-

нок или покрытий из ВЭС, среди которых магнетронное напыление, термическое распыление, 

лазерное напыление и электроосаждение обладают рядом преимуществ. Например, магне-

тронное напыление ВЭС дает возможность получать высокооднородные тонкие покрытия, 

свойства которых значительно превосходят свойства подложки. Так, нанесение пленки ВЭС 
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CrNbTiMoZr прямоточным магнетронным напылением на нержавеющую сталь 304 (Между-

народная классификация) обеспечивает нанотвердость 9,7 ГПа и отличные трибологические 

свойства [5]. В обзорной статье [6] рассматриваются нитридные высокоэнтропийные покры-

тия, полученные реактивно-магнетронным методом. Особенностью нитридных ВЭС покры-

тий является их сверхвысокая твердость, которая делает нитриды из ВЭС многообещающей 

альтернативой сверхтвердым материалам. Так, например, из работы [6] были рассмотрены 

многокомпонентные нитридные пленки систем (AlCrTaTiZr)N, (AlCrMoTaTiZr)N, значения 

микротвердости которых соответственно 35,2 ГПа и 40,2 ГПа. У покрытия системы 

(TiVCrZrHf)N твердость и модуль упругости достигли максимального значения 23,8 ± 0,8 и 

267,3 ± 4,0 ГПа соответственно, у нитрида AlCrNbSiTi со структурой ГЦК, полученного мето-

дом реактивно-магнетронного распыления, и при различных смещениях подложки, были по-

лучены максимальные твердости 36,1 и 36,7 ГПа соответственно. Покрытия (AlCrNbSiTiV)N 

имеют высокую твердость и модуль упругости 41 и 360 ГПа соответственно, что помещало 

покрытия в класс сверхтвердых (≥40 ГПа). Также были исследованы пленки нитрида 

AlCrTaTiZr, у которых твердость и модуль упругости пленок нитрида достигли максимальных 

значений 32 и 368 ГПа.   Помимо магнетронного напыления среди методов PVD для нанесения 

высокоэнтропийных покрытий также нашло применение вакуумно-дуговое осаждение покры-

тий. В работе [7] покрытие системы TiVZrNbHf было нанесено на нержавеющую сталь 

12Х18Н9Т. В результате нанесенное покрытие обладает высокой твёрдостью (порядка 8,1 

ГПа), а при добавлении азота в процесс осаждения полученные нитриды обладают сверхвы-

сокими значениями твердости (порядка 57–66 ГПа). Этим же методом было получено покры-

тие системы N(TiZrVCrAl), которое было нанесено на титановый сплав ВТ6 и также обладаю-

щее относительно высокими значениями твердости (порядка 26–36 ГПа) [8]. 

Помимо вышеперечисленных систем высокоэнтропийных покрытий, которые увеличи-

вают твердость, существуют и другие покрытия, которые могут повышать эрозионную, кор-

розионную стойкость, жаростойкость и другие эксплуатационные характеристики сплавов, 

что значительно расширяет использование сплавов с ВЭС покрытиями в различных отраслях.  

Вследствие эффекта высокой энтропии и эффекта «быстрого закаливания» во время про-

цессов подготовки пленки и покрытия ВЭС имеют тенденцию образовывать одну фазу твер-

дого раствора ГЦК или ОЦК или аморфную фазу с более однородной микроструктурой, чем 

их объемные аналоги, что способствует улучшению коррозионной стойкости [6]. Кроме того, 

коррозионная стойкость высокоэнтропийного покрытия тесно связана с элементным составом 

самого материала, особенно для Cr, Co, Ni, Cu, Ti, Nb, Mo и других элементов, которые явля-

ются основными элементами для формирования пассивной пленки, и все имеют превосход-

ную коррозионную стойкость [9]. Также следует отметить, что, варьируя содержание опреде-

ленных химических элементов, можно увеличивать коррозионную стойкость. Так, например, 

в качестве тонкого слоя подложки методом лазерной наплавки была изготовлена система из 

высокоэнтропийного сплава AlxFeCoNiCuCr, обладающая высокой термостойкостью, износо-

стойкостью и коррозионной стойкостью. Было обнаружено, что ВЭС с более высоким содер-

жанием алюминия обладает более высокой твердостью, лучшей стойкостью к истиранию и 

коррозии [10, 11]. Улучшением данной системы является добавление титана в покрытие. В 

работах [12, 13] исследована система Al2CrFeNiCoCuTix, которая обладает высокой коррози-

онной стойкостью в различных растворах хлоридов. Также коррозионную стойкость стали 45 

можно повысить путем лазерной наплавки покрытия AlCoCr1.50FeNi на ее поверхность [14]. 

А в работе [15] увеличение содержания Co приводит к повышению коррозионной стойкости 

покрытия из высокоэнтропийного сплава. 

Существующие экспериментальные результаты показали, что, как и объемные материалы 

ВЭС, пленки и покрытия из ВЭС также могут обладать превосходной температурной и окис-

лительной стойкостью, демонстрируя высокую фазовую стабильность, превосходную окисли-

тельную стойкость и высокие механические свойства при повышенных температурах. Высо-

кая температурная и окислительная стойкость могут быть обусловлены высокой энтропией 
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смешения составляющих элементов, более низкими коэффициентами диффузии и перераспре-

делением растворенных элементов во время отжига по сравнению с обычными пленками и 

покрытиями. Кроме того, включение Al, Cr, Ta и Zr также может улучшить окислительную 

стойкость за счет образования плотных оксидных пленок [6]. Так, в работе [16] осаждали 

сверхтвердую пленку (AlCrNbSiTiV)N методом реактивного распыления и обнаружили, что 

пленка демонстрирует превосходную термическую стабильность как в своей наноструктуре, 

так и в сверхтвердых свойствах, и сохраняет простую структуру ГЦК даже при отжиге при 

1000° C в течение 5 ч, что можно объяснить высоким энтропийным эффектом и ингибирова-

нием укрупнения зерен в результате сильного искажения решетки. В работе [17] осаждали 

пленки (AlCrMoTaTiZr)N с ГЦК-структурой. После отжига при 1000° C в течение 10 ч пленки 

нитрида сохраняли единую ГЦК-структуру, демонстрируя, что твердый раствор ГЦК был тер-

модинамически стабилен, по крайней мере, до 1000° C, что было обусловлено высоким эф-

фектом энтропии смешивания. В работе [18] подготовили серию пленок сплава TaNbTiW пу-

тем комбинации методов многоцелевого магнетронного распыления и параллельного синтеза. 

Они обнаружили, что после отжига при 500 и 700° C в течение 90 мин в вакууме пленки не 

показали фазового превращения. При отжиге при 900° C появилось только несколько пиков 

оксидов. Стойкость к окислению является основным вопросом термостойкости пленок и по-

крытий при высоких температурах. Хуан и др. [19] получили покрытия AlCrFeMo 0.5 NiSiTi 

и AlCoCrFeMo 0.5 NiSiTi методом термического напыления и обнаружили, что оба покрытия 

демонстрируют хорошую стойкость к окислению, что можно объяснить в основном образова-

нием плотного слоя оксида алюминия на верхней поверхности. Прирост веса покрытий 

AlCrFeMo 0.5 NiSiTi и AlCoCrFeMo 0.5 NiSiTi, выдержанных при 1100° C в течение 150 ч, 

составил около 8,2 и 9,2 мг/см2 соответственно, что сопоставимо с коммерческими сплавами 

NiCrAlY, устойчивыми к окислению. В работе [20] исследовали термическую стабильность и 

стойкость к окислению покрытий TiVCrAlSi, нанесенных лазером на сплав Ti-6Al-4V, кото-

рый состоял из (Ti,V) 5 Si 3 и твердого раствора ОЦК. Испытание на окисление покрытия и 

сплава Ti-6Al-4V показало, что покрытие TiVCrAlSi, нанесенное лазером, может эффективно 

улучшить стойкость к окислению Ti-6Al-4V при 800° C на воздухе. Предполагается, что обра-

зование тонкого оксидного слоя с хорошей адгезией, состоящего из SiO2, Cr 2O3, TiO2, Al2O3 

и небольшого количества V2O5, отвечает за улучшение стойкости к окислению. В работе [21] 

синтезировали покрытие NiCrCoTiVAl методом лазерного поверхностного легирования на 

подложке Ti-6Al-4V. После выдерживания при 900° C в течение 8 ч составляющие фазы оста-

лись неизменными. Результаты анализа показали, что покрытие было стабильно ниже 1005° 

C. Стойкость к окислению этого покрытия ВЭС может быть обусловлена наличием NiO и ле-

гирующих элементов Al, Cr и Co. 

Таким образом, существует большое количество комбинаций различных систем высокоэн-

тропийных покрытий, но одной из изученных является покрытие на основе сплава Кантора. 

Созданный в 2004 г. высокоэнтропийный пятикомпонентный сплав Кантора CoCrFeNiMn по-

прежнему находится в фокусе внимания исследователей в области физического материалове-

дения благодаря хорошему сочетанию прочностных и пластических свойств, которые откры-

вают перспективы его использования в различных наукоемких отраслях промышленности 

[22]. К преимуществам сплава Кантора можно отнести дешевизну изготовления сплава (отно-

сительно других систем ВЭС), а также хорошую изученность. Тем не менее покрытия на ос-

нове сплава Кантора изучены недостаточно по сравнению с объёмным материалом. Так, в ра-

боте [23] исследовали микроструктуру покрытия системы CrMnFeCoNi и коррозионное пове-

дение как в 3,5 мас. % растворе NaCl, так и в 0,5 М растворе серной кислоты.  Покрытие с 

простой структурой фазы ГЦК в основном состоит из столбчатых дендритов и образует хоро-

шую металлическую связь с подложкой. Коррозионная стойкость покрытия аналогична стой-

кости нержавеющей стали 304, за исключением более узкой пассивной зоны как в растворе 

NaCl, так и в растворе серной кислоты. В работе [24] методом магнетронного распыления по-

стоянного тока было нанесено покрытие системы FeMnNiCoCr на подложку из стали М2. Было 
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обнаружено, что увеличение напряжения смещения подложки оказывает существенное влия-

ние на микроструктуру, фазовый, элементный состав и механические свойства этих покрытий. 

Высокое значение твердости ~9,1 ГПа и исключительная устойчивость к повреждениям были 

достигнуты для покрытия, нанесенного при -120 В. Также следует отметить, что при армиро-

вании частицами TiC износостойкость покрытия увеличивается [25].  

Методом магнетронного распыления постоянного тока также был нанесен нитрид покры-

тия в работе [26] на ту же подложку из стали М2. В результате экспериментов выявлено, что 

покрытия с низким содержанием азота (~6 ат. %) демонстрируют структуру ГЦК, обеспечива-

ющую лучшую ударную вязкость и прочность сцепления, но худшую твердость (~11 ГПа) и 

износостойкость. Покрытия со средним содержанием азота (~15–22 ат. %) демонстрируют 

структуру ОЦК, которая демонстрирует улучшенную твердость (~13–15 ГПа) и износостой-

кость, но худшую реакцию на царапины, что было приписано присутствию более твердой, но 

более хрупкой фазы ОЦК. При высоком содержании азота (~26 ат. %) впечатляющее сочета-

ние превосходной твердости (~17 ГПа), износостойкости и хорошей реакции на царапины 

было идентифицировано с хорошо определенной фазой ОЦК. Именно эти зерна ОЦК вместе 

с армированными азотом границами зерен преодолели несовместимость между прочностью и 

пластичностью.  

ЗАКЛЮЧЕНИЕ 

Обзор публикаций по тематике высокоэнтропийных покрытий показал, что существует ин-

терес у научного сообщества к проведению исследования как существующих систем высоко-

энтропийных сплавов, так и к разработке новых систем. Несмотря на хорошую изученность 

объемного сплава Кантора, имеющиеся публикации по покрытиям из данного материала не 

позволяют сделать однозначный вывод о границах применимости высокоэнтропийных покры-

тий и закономерностях их формирования PVD методами. В связи с этим исследования по уста-

новлению закономерностей формирования высокоэнтропийных покрытий и определения гра-

ниц применимости данных покрытий являются актуальными и позволят сформировать науч-

ные основы для получения покрытий схожих систем PVD методами. 
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