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Наночастицы золота (НЧЗ), содержащие флуоресцентные метки, высоко востребованы 

для развития диагностики заболеваний, в т.ч. онкологических. Нами описан способ ковалент-

ного присоединения флуоресцеина к НЧЗ диаметром 12.7 (НЧЗ-13) и 6.1 нм (НЧЗ-6) через линкер 

–ПЭГ71-NH-(CH2)6-NH–, позволяющий разнести в пространстве НЧЗ и флуорофор на расстоя-

ние, необходимое для преодоления эффекта тушения флуоресценции поверхностью НЧЗ. Полу-

ченные флуоресцирующие конъюгаты НЧЗ могут эффективно применяться для биовизуализа-

ции опухолевых тканей in vivo.  

Ключевые слова: наночастицы золота, флуоресценция, биовизуализация, полиэтиленгли-

коль, флуоресцеин. 

Введение 

Благодаря своим физико-химическим свойствам наночастицы золота (НЧЗ) являются основой для создания 

систем диагностики и доставки терапевтических средств (ТС), несущих сигнальную (флуоресцентную, 

радиоактивную и др.) метку [1–3], в т.ч. нуклеиновых кислот [4]. Для оценки биораспределения [5–7], 

поглощения [8] и цитотоксичности [9–11] с участием НЧЗ, как правило, применяют метод масс-спектрометрии 

с индуктивно-связанной плазмой [8; 12–14] и метод проточной цитометрии [15–16]; в последнем детектировать 

можно только флуоресцирующие НЧЗ. При этом хорошо известно, что НЧЗ являются эффективным тушителем 

флуоресценции [17]. Тушение преодолевают, используя расщепляемый линкер между НЧЗ и ТС [18–20] 

или разнося в пространстве на достаточное расстояние НЧЗ и ТС так, чтобы итоговые НЧЗ флуоресцировали [18; 21]. 

В частности, НЧЗ конъюгируют с тио-содержащим полиэтиленгликолем (SH-ПЭГ) различной длины. ПЭГ [22–23] 

увеличивает клеточное поглощение и продлевает время циркуляции НЧЗ, что делает его привлекательным 

линкером для создания флуоресцирующих НЧЗ [24]. Теоретический расчет позволяет оценить необходимую 

длину спейсера, затем требуется ее тонкая настройка экспериментальным путем. Флуоресцеин широко 

применяется в молекулярной биологии, однако в литературе не описано способов преодоления тушения его 

флуоресценции при адсорбции на НЧЗ, наблюдающегося из-за того, что длина волны эмиссии флуоресцеина 

ниже длины волны плазмонного резонанса НЧЗ [25]. Мы предлагаем подход для конъюгации флуоресцеина 

и НЧЗ диаметром 6 и 13 нм, способных к эффективному проникновению в клетки, посредством линкера 

оптимизированного состава. В представленной работе описана модификация НЧЗ-S-ПЭГ-COOH гексаметилен-

диамином для дальнейшего присоединения флуорофора в форме сукцинимидного эфира. Физико-химические 

свойства конъюгатов НЧЗ были исследованы на каждом этапе в рамках разработки протокола синтеза 

валидированных флуоресцирующих препаратов для биомедицинского применения, а именно в клеточной 

визуализации.  

Экспериментальная часть 

1. Синтез НЧЗ 

НЧЗ-13 получали методом цитратного восстановления HAuCl4∙H2O в соответствии с [26]. НЧЗ-6 – методом 

«роста семян» согласно [27] с изменениями. В 10 мл водного раствора, содержащего 0.25 мМ HAuCl4 («Аурат», 

Россия) и 0.25 мМ Na3C6H5O7 (Acros, США), добавляли 0.3 мл ледяного свежеприготовленного раствора 

0.1 М NaBH4 (Serva, США) при интенсивном перемешивании на льду. Через 3 ч к 2.5 мл полученного раствора 

добавляли последовательно 7.5 мл водного раствора, содержащего 0.25 мМ HAuCl4 и 1% поливинилпирролидон 

(58000 Да, Acros organics, Бельгия), и 0.05 мл свежеприготовленного водного раствора 0.1 М C6H8O6 (Honeywell 

Fluka, Германия) при 25 °С и перемешивании. После интенсивного перемешивания в течение 20 мин реакцион-

ную смесь центрифугировали 1 ч при 100 000 g («Beckman Coulter», США), убирали супернатант и доводили 

до нужной концентрации буферным раствором 10 мМ Трис, 1 мМ ЭДТА (Acros, США), pH 8,0. 

2. Синтез НЧЗ-ПЭГ 

НЧЗ (10 пмоль) инкубировали с водным раствором 29 мкМ HS-ПЭГ-COOH (3,2 кДa, Iris Biotech GmbH, 

Германия) при 25 °С и встряхивании 1 400 об./мин в течение 24 ч. Избыток HS-ПЭГ-COOH удаляли центрифу-

гированием (I) для НЧЗ-ПЭГ-13 – 30 мин при 16 100 g, отмывкой три раза 4 мМ Na3C6H5O7; (II) для НЧЗ-ПЭГ-6 – 1 ч 
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при 100 000 g, отмывкой раствором 10 мМ Трис, 1 мМ ЭДТА, pH 8,0. До необходимой концентрации НЧЗ-ПЭГ-13 

доводили 4 мМ Na3C6H5O7, НЧЗ-ПЭГ-6 – раствором 10 мМ Трис, 1 мМ ЭДТА, pH 8,0. 

3. Синтез НЧЗ-NH2 

10 пмоль НЧЗ-ПЭГ, 1 мкмоль 1-этил-3-(3-диметиламинопропил)карбодиимид (ЕДК, Applichem, Германия) 

и 0 01 мкмоль гексаметилендиамина (Sigma-Aldrich, США) инкубировали в течение 24 ч в буферном растворе 

Трис-HCl pH 8,6 согласно [28]. Удаление избытка гексаметилендиамина проводили аналогично п. 2. Продукт 

реакции далее в тексте обозначен как НЧЗ-NH2-13 или НЧЗ-NH2-6. 

4. Синтез НЧЗ-Flu 

10 пмоль НЧЗ-NH2 вводили в реакцию с 0.01 мкмоль флуоресцеин-5-изотиоционата (Sigma-Aldrich, США). 

Реакционную смесь общим объемом 1 мл инкубировали при 25 °С в течение 24 ч в растворе Tris-HCl pH 8,6, 

избыток флуоресцеина удаляли аналогично п. 2. 

5. Определение емкости флуоресцеина на НЧЗ 

По данным интенсивности флуоресценции конъюгатов НЧЗ-Flu и стандартных растворов флуоресцеина 

с концентрацией 1, 2, 4, 6, 8, 10 нМ рассчитывали концентрацию флуоресцеина на НЧЗ с использованием граду-

ировочного графика. Спектрофотометрически определяли концентрацию конъюгатов НЧЗ-Flu и рассчитывали 

количество флуоресцеина на НЧЗ (q) по формуле (1): 𝑞 =  
[Flu]конъюгат

[НЧЗ−Flu]
. 

6. Статистические методы 

Статистическую обработку данных проводили с использованием программного обеспечения Microsoft Excel 

на основе t-критерия Стьюдента с доверительной вероятностью 0.95. Значения ζ-потенциала, PdI, емкости флуо-

ресцеина на НЧЗ указано как среднее значение ± ошибка; значение гидродинамического диаметра указано как 

среднее значение ± стандартное отклонение. Каждый эксперимент выполняли не менее чем в четырех повторах. 

7. Определение доли целевых НЧЗ 

Процентную долю целевых НЧЗ в реакционной смеси q определяли по формуле (2): 

𝑞 =
А1

А0
· 100%, где А1 – оптическая плотность конечных целевых НЧЗ после выделения, А0 – оптическая плот-

ность исходной реакционной смеси НЧЗ до выделения. 

8. Центрифугирование в вязкой среде 

В пробирку с 800 мкл 84% раствора сахарозы поместили 200 мкл реакционной смеси, содержащей конъ-

югаты НЧЗ-6 с концентрацией 40 нМ, центрифугировали в течение 50 мин при 16 100 g, собирали фракцию очи-

щенных конъюгатов НЧЗ-6. 

9. Диализ 

Диализ проводили в пробирках с винтовой крышкой объемом 1.5 мл с использованием мембраны для экс-

трудера Whatman (Maidstone, UK) с диаметром пор 30 нм при 25 °C в течение 16 ч против 10 мМ Трис, 1мМ 

ЭДТА (pH 8,0). 

Результаты и обсуждение 

1. Анализ исходных НЧЗ и их конъюгатов физико-химическими методами 

ПЭГ, содержащие SH-группу с одного конца и карбоксильную или амино-группы с другого конца [29–31], 

активно используются как бифункциональные линкеры для образования связей Au-S с поверхностью золота 

и для связывания с флуоресцентной меткой с помощью второй функциональной группы. В случае НЧЗ-S-ПЭГ-

NH2 есть два варианта введения флуорофорной метки: NH2-группа на поверхности НЧЗ реагирует с изотиоцио-

натом флуорофора в присутствии ЕДК [29] или с глутаральдегидом с последующим взаимодействием с амино-

флуорофором [31]. Если же используют НЧЗ в форме НЧЗ-S-ПЭГ-COOH, то карбоксильную группу сначала ак-

тивируют ЕДК и NHS и далее вводят в реакцию амино-флуорофор [31]. Последовательность этапов присоедине-

ния флуорфора к НЧЗ варьируют. В одних случаях сначала получают конъюгат флуорофора с линкером [19], 

а потом вводят его в реакцию с НЧЗ, в других – сначала получают конъюгат НЧЗ и линкера, а затем присоединяют 

флуорофор [32]. В случаях алкин-содержащего линкера возможно присоединение флуорофора в форме азида с ис-

пользованием реакции азид-алкинового циклоприсоединения [30; 33]. Мы предлагаем методику введения флуо-

рофора в форме изотиоцианата или N-гидроксисукцинимидного эфира, являющихся более распространенными 

коммерчески доступными производными флуорофоров, чем их аминопроизводные. Реакцию проводили в два 

этапа согласно схеме 1: 
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Схема 1 

 

Для контроля степени превращения реагентов в продукты реакции и специфичности их взаимодействия мы 
провели ряд контрольных экспериментов. Ранее нами было показано, что флуоресцеин с высокой эффективно-
стью нековалентно адсорбируется на НЧЗ, покрытых цитратом [34]. Поэтому важно убедиться в ковалентном 
присоединение флуоресцеина по аминогруппам HЧЗ-NH2. В первом контрольном эксперименте проводили ин-
кубацию НЧЗ-ПЭГ и гексаметилендиамина без ЕДК-активирующего агента (НЧЗ-ПЭГ/NH2-(CH2)6-NH2). Во вто-
ром контрольном эксперименте инкубировали НЧЗ-ПЭГ с флуоресцеином (НЧЗ-ПЭГ/Flu, где / – нековалентая адсорб-
ция). Полученные конъюгаты исследовали методами фотонно-корреляционной спектроскопии (ФКС) (табл. 1). 

Таблица 1 

Гидродинамический диаметр (dH), ζ-потенциал и индекс полидисперсности (PdI)  

конъюгатов НЧЗ диаметром 13 нм (Zetasizer Nanoseries Nano ZS, «Malvern», США) 

Шифр Конъюгат dH, нм  
ζ-потенциал, 

мВ 
PdI 

(0) НЧЗ-13 19.0±0,5 -30±5 0.15±0,02 

(1) НЧЗ-ПЭГ-13 47±25 -45±4 0.27±0,05 

(2) НЧЗ-ПЭГ-13/ NH2-(CH2)6-NH2  108±13 -45±2 0.31±0,04 

(3) НЧЗ-NH2-13 35±13 -33±3 0.20±0,04 

(4) НЧЗ-Flu-13 36±16 -48±1 0.25±0,03 

(5) НЧЗ-ПЭГ-13/Flu 46±25 -49±6 0. 32±0,04 

Конъюгаты (1), (2), (4), (5) имели ζ-потенциалом около -47 мВ, при этом ζ-потенциал конъюгатов (3) соста-
вил -33 мВ. Это может свидетельствовать о том, что часть карбоксильных групп конъюгата НЧЗ-ПЭГ прореаги-
ровала с диамином с образованием амидной связи, а поскольку pKa карбоксильной группы значительно больше, 
чем pKa амино-группы, то ζ-потенциал уменьшился. ζ-Потенциал НЧЗ-Flu уменьшился в сравнении с НЧЗ-NH2 
за счет отрицательного заряда карбоксильной группы флуоресцеина. Конъюгат (2) имеет значительно больший dH, 
чем конъюгат (3). Вероятно, в присутствии ЕДК реакция НЧЗ-ПЭГ и диамина протекает с образованием кова-
лентной связи, а в отсутствие ЕДК происходит неселективная нековалентная сорбция NH2-(CH2)6-NH2 на поверх-
ность НЧЗ за счет электростатических сил. 

Гель-электрофорез в агарозном геле позволяет визуально без использования дополнительного окрашивания 
геля оценить НЧЗ по значению заряда и размера. Данный метод позволяет оценить эффективности протекания 
химической реакции (рис. 1). 

Уменьшение электрофоретической подвижности НЧЗ-NH2 (3, рис. 1А) по сравнению с НЧЗ-ПЭГ (1, рис. 1А) 

с учетом сравнимого диаметра этих конъюгатов и уменьшения ζ-потенциала указывает на ковалентное присо-

единение амино-группы в (3). Конъюгат (3, рис. 1А) мигрирует в геле однородной узкой полосой в отличие 

от конъюгата (2, рис. 1А), содержащего, по всей видимости, различное количество нековалентно сорбированных 

молекул гексаметилендиамина. Более высокий PdI конъгатов (2) также свидетельствует об этом (табл. 1). Конъ-

югат НЧЗ-Flu (4, рис. 1А) имеет большую подвижность, чем его предшественник – НЧЗ-NH2 (3, рис. 1А), что со-

гласуется с данными ФКС о диаметре и ζ-потенциале. В то же время он отличается и от нековалентного конъ-

югата НЧЗ-ПЭГ/Flu (5, рис. 1А), образующего в геле широкую диффузную полосу более высокой подвижности, 

содержащую, по всей видимости, широкий спектр нековалентных ассоциатов НЧЗ-ПЭГ и флуоресцеина при срав-

нимых dH и ζ-потенциале, но со значительно возросшим PdI. Мы оценили также гидродинамический диаметр и заряд 

исходных и модифицированных НЧЗ диаметром 6 нм в буфере 10 мМ Трис 1мМ ЭДТА pH 8,0 (табл. 2). 
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Рис. 1. Сравнение электрофоретической подвижности конъюгатов НЧЗ диаметром 13 нм в 0,4% агарозном геле (А): 

НЧЗ-13 (0), НЧЗ-ПЭГ-13 (1), НЧЗ-ПЭГ-13/ NH2-(CH2)6-NH2 (2), НЧЗ-NH2-13 (3), НЧЗ-Flu-13 (4), НЧЗ-ПЭГ-13/Flu (5). 

(Б) Сравнение электрофоретической подвижности исходных НЧЗ и целевых конъюгатов НЧЗ диаметрами 6 и 13 нм  

в 1.5% агарозном геле: НЧЗ-13 (1), НЧЗ-Flu-13 (2), НЧЗ-6 (3), НЧЗ-Flu-6 (4).  

Представлены сканированные изображения гелей после электрофоретического разделения  

в буферном растворе Трис-глицин при 25 °С, напряженности электрического поля 5 В/см  

в течение 30 мин. 

Таблица 2 

Гидродинамический диаметр (dH), ζ-потенциал и индекс полидисперсности (PdI)  

конъюгатов НЧЗ диаметром 6 нм 

Характеристика НЧЗ-6 НЧЗ-ПЭГ-6 НЧЗ-NH2-6 НЧЗ-Flu-6 

dH, нм 24.1 ± 18.4 31.4 ± 27.4 36.4 ± 32.4 98.6 ± 57.7 

ζ-потенциал, мВ −7.6 ± 1.7 −14.6 ± 6.0 −10.3 ± 2.2 −16.9 ± 2.8 

PdI 0.36 ± 0.03 0.37 ± 0.04 0.39 ± 0.01 0.30 ± 0.05 

Полученные конъюгаты НЧЗ диаметром 6 нм имеют отрицательный ζ-потенциал. Его качественное измене-

ние по модулю для НЧЗ-6, НЧЗ-ПЭГ-6, НЧЗ-NH2-6, НЧЗ-Flu-6 определяется величиной электростатического за-

ряда покрывающих лигандов, как и для конъюгатов НЧЗ диаметром 13 нм. Совместный анализ данных гель-

электрофореза и ФКС косвенно свидетельствует о ковалентном присоединении флуоресцеина к исходным НЧЗ 

диаметром 6 нм (рис. 1 Б, табл. 2). Бóльшая электрофоретическая подвижность 13-нм конъюгатов НЧЗ по срав-

нению с 6-нм конъюгатами согласуется со значениями ζ-потенциала. 

 

Рис. 2. Изображения ПЭМ, полученные с использованием просвечивающего электронного микроскопа  

высокого разрешения JEM 1400 (Jeol, Япония) со встроенной цифровой камерой производителя  

и цифровой камерой бокового ввода Veleta (SIS, Германия). (А) НЧЗ-Flu-6,  

выделенные центрифугированием в течение 1 ч при 100 000g;  

(Б) НЧЗ-Flu-13, выделенные центрифугированием в течение 30 мин ч при 16 100g;  

(В) НЧЗ-Flu-6, выделенные центрифугированием в течение 30 мин ч при 16 100g. 
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На всех этапах синтеза НЧЗ и их конъюгаты были исследованы методом просвечивающей электронной микроско-

пии (ПЭМ). Диаметр целевых НЧЗ-Flu-6 и НЧЗ-Flu-13, по данным ПЭМ, составил 6.1 ± 0.3 нм и 12.7 ± 0.2 нм (рис. 2 А, Б), 

агрегации частиц не наблюдали. 

2. Особенности очистки целевых конъюгатов НЧЗ 

Очевидно, что примесь непрореагировавшего остатка флуоресцеина в препарате НЧЗ-Flu может привести 

к некорректной интерпретации результатов экспериментов in vivo и in vitro. Для отделения модифицированных 

НЧЗ от избытка реагентов, как правило, используют метод седиментации. Чтобы количественно получить НЧЗ 

диаметром 13 нм, достаточно центрифугирования (ЦФ) в течение 30 мин при 16 100 g. При работе с НЧЗ диамет-

ром 6 нм мы столкнулись с проблемой очистки реакционной смеси от избытка реагентов (рис. 2В). Даже при уве-

личении продолжительности центрифугирования наночастиц в 2,5 раза выход целевого продукта НЧЗ-Flu-6 со-

ставил не более 11% (табл. 3). Поэтому мы проверили на каждом этапе синтеза конъюгатов НЧЗ-6 разные спо-

собы очистки целевого продукта реакции. Ниже, на примере последнего этапа синтеза, приведены физико-хими-

ческие характеристики конъюгатов при разных способах их очистки (табл. 3). 

Таблица 3 

Сравнение физико-химических свойств НЧЗ-Flu-6 после разных способов очистки,  

методом динамического светорассеяния в буфере Tris-ЭДТА pH 8,0 

Метод* целевые НЧЗ, % dH, нм ζ, мВ PdI 

№ 1 11 172.2 ± 73.7 −2.4 ± 2.1 0.244 
№ 2 46 142.8 ± 53.3 −10.4 ± 2.6 0.305 

№ 3 (не оценено) 21.2 ± 10.5 (50%). 114.6 ± 58.3 (50%) −22.4 ± 1.4 0.619 

№ 4 100 98.6 ± 57.7 −16.9 ± 2.8 0.299 

*№1 – ЦФ 75 мин, 16 100 g; №2 – ЦФ в вязкой среде (84% сахароза) 50 мин, 16 100 g;  
№3 – диализ через мембрану 30 нм в Tris-ЭДТА pH 8,0, 16 ч; №4 – ЦФ 1 ч, 100 000g. 

Видно, что использование метода №4 (центрифугирование при 100 000 g в течение 1 ч) привело к количе-

ственному выделению целевых конъюгатов НЧЗ. Конъюгаты были монодисперсны (PdI 0,299, табл. 3). В осталь-

ных случаях наблюдали агрегацию целевых конъюгатов (данные ПЭМ не представлены) и низкий выход целе-

вого продукта. 

3. Спектроскопические исследования полученных конъюгатов НЧЗ 

По литературным данным коэффициенты молярного поглощения при 520 нм для НЧЗ диаметром 6 и 13 нм 

составляют 8.56·106 М−1см−1 и 8.78·108 М−1см−1 соответственно [35], т.е. (при равной концентрации) НЧЗ диамет-

ром 13 нм – более удобный для визуального контроля объект исследования, чем НЧЗ диаметром 6 нм (рис. 3 А). 

Спектр оптического поглощения НЧЗ-Flu-6 значительно отличается от спектра исходных НЧЗ-6 и имеет 

характерный для флуоресцеина максимум при 495 нм (рис. 3 Б). 

 

Рис. 3. (А) Фотография образцов НЧЗ диаметрами 6 и 13 нм при концентрации НЧЗ 3 нМ.  

Спектры оптического поглощения (Б), возбуждения флуоресценции (В)  

и испускания флуоресценции (Г) образцов.  

Спектроскопические измерения выполнены на флуориметре Clariostar (BMG LABTECH, Германия). 

Спектры возбуждения (рис. 3 В) и испускания (рис. 3 Г) флуоресценции исходных НЧЗ диаметрами 6 и 13 нм, 

их конъюгатов с флуоресцеином НЧЗ-Flu-6 и НЧЗ-Flu-13 мы сравнили с таковыми для флуоресцеин-меченной 

ДНК20-Flu и нековалентного конъюгата НЧЗ-13/ДНК20-Flu. Показано, что конъюгаты НЧЗ-Flu-6 и НЧЗ-Flu-13 

с ковалентно присоединенным флуоресцеином флуоресцируют, в то время как спектры поглощения и испуска-

ния конъюгата НЧЗ-13 с нековалентно адсорбированной на нем флуоресцеин-меченной ДНК не имеют характер-

ных максимумов (НЧЗ-13/ДНК20-Flu, рис. 3 В, Г), вероятно, из-за близкого расположения флуоресцеина относи-
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тельно поверхности НЧЗ. Интенсивность флуоресценции 2.5 нМ НЧЗ-Flu-6 сопоставима с интенсивностью флу-

оресценции 49 нМ ДНК20-Flu, в то время как интенсивность флуоресценции 2.5 нМ НЧЗ-Flu-13 аналогичной кон-

центрации соответствует интенсивности флуоресценции 37 нМ ДНК20-Flu (во всех случаях λem = 530 нм, λex = 483 нм). 

Мы рассчитали емкость (количество) молекул флуоресцеина на одну НЧЗ диаметром 13 нм, которое составило 

16 ± 4 остатка. Следовательно, остаток флуоресцеина в составе конъюгата с НЧЗ-13 характеризуется интенсив-

ностью флуоресценции на уровне флуорофора в составе олигонуклеотида с той же молярной концентрацией. 

Оценка длины используемого нами линкера на основе измерения кинематической вязкости молекул ПЭГ [36] 

составила более 4 нм, а с использованием HyperChem 8.0.8 – 26.1 нм. В литературе представлены разные данные 

о расстояниях между меткой и НЧЗ, необходимые и достаточные для эффективной флуоресценции. Известно, 

что удаления флуорофора Cy5 на 10 нм от плоской поверхности стекла с присоединенными НЧЗ [25] и на 5 нм 

от сферических НЧЗ [18] достаточно для преодоления тушения. В работе [37] было показано, что для преодоле-

ния тушения поверхностью НЧЗ (d = 8–16 нм) флуоресценции красителя на основе индоцианинового зеленого, 

значительно отличающимся от флуоресцеина, с квантовым выходом 0.012 и 0.93 и максимумами испускания 830 нм 

и 521 нм, превышающими длину волны плазмонного резонанса НЧЗ, было достаточно полиэтиленгликолевого 

линкера длиной 3.6 нм (оценка с использованием HyperChem 8.0.8). Таким образом, эти расстояния зависят и (i) 

от типа НЧЗ, и (ii) от типа флуоресцентной метки, а также (iii) от того, находится НЧЗ в растворе или на поверх-

ности, и выбор линкера является многопараметрической задачей для каждого типа флуоресцирующих НЧЗ. 

При интенсивном развитии методов биовизуализации опухолей in vivo с применением НЧЗ, конъюгирован-

ных с флуорофорами, в комбинации с высокочувствительными методами детекции (рамановское рассеяние 

света, компьютерная томография и др.) [38–40] широкое практическое применение этих методов затруднено из-

за низкой глубины проникновения рассеянного света в образцы тканей [40]. Полученные нами флуоресцирующие 

конъюгаты НЧЗ успешно проникали в клетки линий NCI-H23 и A549 (аденокарциномы легкого), BrCCh4e-134 

(аденокарциномы молочной железы) и uMel1 (увеальной меланомы) [42]. Показано, что жизнеспособность ука-

занных клеточных линий снижалось при их обработке данными флуоресцирующими конъюгатами НЧЗ в соче-

тании с облучением холодной плазменной струей [42], т.е. помимо диагностического приложения данные конъ-

югаты НЧЗ обладают и терапевтическим потенциалом. Использованные в работе НЧЗ не оказывали токсического 

воздействия на лабораторных мышей в дозе 35 мкг/животное, что согласуется с литературными данными [43]. 

Наши результаты демонстрируют высокий потенциал флуоресцирующих НЧЗ в диагностике онкологических за-

болеваний с улучшением характеристик метода биовизуализации опухолей in vivo за счет сочетания флуорес-

ценции и уникальных физико-химических свойств НЧЗ. 

Заключение 

Разработан способ ковалентного присоединение флуоресцеина через линкер –S-ПЭГ-NH-(CH2)6-NH– к НЧЗ 

двух различных диаметров (6 и 13 нм), позволяющий полностью преодолеть эффект тушения флуоресценции 

поверхностью золота. Изложена методика синтеза и очистки конъюгатов НЧЗ с флуоресцеином. Представленный 

подход технологически прост, не требует синтеза флуорофоров со специфическими спектральными характери-

стиками и позволяет получать флуоресцирующие конъюгаты НЧЗ и любого коммерчески доступного красителя, 

излучающего в нужном диапазоне длин волн с учетом конкретной задачи по визуализации. Полученные резуль-

таты расширяют возможности применения методов биовизуализации в диагностике онкологических заболеваний. 
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Fluorophore-conjugated gold nanoparticles (GNPs) are in high demand for the development of diagnostic tools for diseases, 

including cancer. We have described a method of covalent attachment of fluorescein to GNPs with a diameter of 12.7 (GNP -13) 

and 6.1 nm (GNP-6) via a linker –PEG71-NH-(CH2)6-NH–, allowing to separate the GNP and fluorophore in space to a distance nec-

essary to overcome the effect of fluorescence quenching by the GNP surface. The obtained fluorescent GNP conjugates can be effec-

tively used for biovisualization of tumor tissues in vivo. 
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