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Представлен способ количественного анализа модельных растворов асфальтенов в то-

луоле с использованием методов инфракрасной спектроскопии и хемометрики. Растворы 

с концентрациями 2–10 масс. % исследованы с помощью спектрометра i-Red 7800 u-L. Про-

веден анализ полос поглощения, характерных для функциональных групп асфальтенов. Для по-

вышения точности количественного определения применены методы многомерной обработки 

данных – метод главных компонент и проекция на латентные структуры. Построенная ре-

грессионная модель показала высокую степень согласованности между измеренными и пред-

сказанными значениями концентрации. Полученные результаты демонстрируют потенциал 

методики для экспресс-анализа и количественной оценки асфальтенов в органических растворах. 
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Введение 

ИК-спектроскопия остается одним из наиболее доступных и универсальных методов анализа состава 
нефтей и нефтепродуктов. Высокая скорость, воспроизводимость и простота пробоподготовки позволяют ис-
пользовать данный подход как для качественной, так и для количественной оценки химических компонентов 
сложных углеводородных систем [1–3]. 

Особый интерес представляет изучение асфальтенов – высокомолекулярных компонентов нефти, влияю-
щих на стабильность, транспортируемость и перерабатываемость углеводородных систем [4]. Асфальтены об-
ладают широким спектром функциональных групп и высокой ароматичностью, что делает ИК-спектроскопию 
особенно чувствительным методом для их исследования [5–6]. 

Ранее было показано, что ИК-спектры асфальтенов содержат характерные полосы в области 1 600–1 700 см⁻¹ 
(C=C связь в ароматическом кольце), 2 800–3 000 см⁻¹ (валентные колебания C–H в CН3- и CH2- группах) 
и 1 350–1 460 см⁻¹ (деформационные колебания C–H в CН3- и CH2- группах), а также полосы, соответствующие 
гетероатомным фрагментам – C=O (около 1 740 см

−1
), S=O (около 1 030 см

−1
). Регистрация ИК-спектров как 

в твердом состоянии, так и в органических растворителях позволяет проводить сравнительный анализ состава 
и степени полярности исследуемых образцов [5; 7]. 

Помимо прямой расшифровки спектров, в последние годы все шире применяется математическая обработ-
ка спектральных данных с использованием хемометрики. Методы главных компонент (МГК) и проекции 
на латентные структуры (PLS) доказали свою эффективность для анализа многомерных данных ИК-спектров 
и построения калибровочных моделей по ключевым физико-химическим показателям [8–11]. 

Целью данной работы является исследование растворов асфальтенов в толуоле методом ИК-спектроскопии 
с последующей количественной обработкой полученных данных, а также применимости методов PLS-регрессии 
для построения моделей, отражающих зависимость между спектральными характеристиками и содержанием 
асфальтенов в растворе. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 

Методика выделения асфальтенов  

и приготовления растворов для исследований 

Выделение асфальтенов из нефти проводили по методу Маркуссона-Саханова путем осаждения 40-кратным 

избытком н-гексанa при комнатной температуре. Полученный осадок отмывали гексаном и сушили до постоян-

ной массы. Из полученных асфальтенов готовили растворы в толуоле с концентрациями 2, 4, 6, 8 и 10 масс. %. 

Оборудование 

Инфракрасные спектры исследуемых растворов регистрировали на инфракрасном Фурье спектрометре 

SILab i-Red 7800 u-L (Китай) в диапазоне 4 000–450 см
−1

 с разрешением 4,0 см
-1

 при 25 °С. 
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Образцы растворов вносили в кювету из KBr толщиной 4 мм с помощью дозирующего устройства. 

Для каждой концентрации (включая чистый толуол) регистрировали последовательно по 5 спектров.  

Предварительная обработка спектров выполнялась в программе SiLab WSI и включала вычитание фоново-

го сигнала, корректировку базовой линии и сглаживание. Анализ осуществлялся по характерным полосам по-

глощения, соответствующим колебаниям функциональных групп исследуемых растворов асфальтенов.  

Также были зарегистрированы ИК-спектры выделенных из нефти асфальтенов. Для этого твердые образцы 

асфальтенов предварительно растворяли в хлороформе и наносили на пластинки из KBr в виде пленки путем 

испарения растворителя. 

Методы обработки спектров 

Для интерпретации ИК-спектров и количественной оценки содержания асфальтенов в растворах использо-

вали методы хемометрической обработки данных. Подобные методы могут дать преимущество при работе 

с многокомпонентными системами, поскольку в регистрируемых спектрах отдельные полосы поглощения мо-

гут перекрываться. 

Предварительную обработку проводили методом главных компонент (МГК), позволяющим выделить ос-

новные направления вариаций в массиве спектральных данных и визуализировать различия между образцами 

и выявить скрытые зависимости в структуре данных. Каждый спектр представляется в виде набора числовых 

признаков, соответствующих поглощению при различных волновых числах. Таким образом, для каждого ис-

следуемого образца получали матрицу размером 5 × 1 841 (5 строк на 1 841 признак) [12]. 

Для построения модели зависимости между спектром и концентрацией асфальтенов применяли метод 

PLS-регрессии (проекции на латентные структуры). Этот подход позволяет одновременно учитывать все волно-

вые числа и оценивать вклад каждого из них в предсказание концентрации. Качество модели оценивали 

по стандартным метрикам – среднеквадратичной ошибке предсказания (среднеквадратичная ошибка кросс-

валидации, RMSECV) и коэффициенту детерминации (R
2
). В дальнейшем такая модель может быть использо-

вана для быстрой оценки содержания асфальтенов в неизвестных пробах по их спектру [13]. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Качественный анализ 

Для описания полученных ИК-спектров данные были усреднены по каждой концентрации, включая толу-

ол, путем средней арифметической интенсивности полос поглощения на каждом волновом числе. Поскольку 

исследуемые растворы асфальтенов в толуоле использовались в качестве моделей нефти, то вычитания спек-

тров поглощения растворителя из спектров модельных растворов не проводили, сигналы толуола учитывались 

как часть системы для анализа взаимодействия с асфальтенами. 

На рис. 1 в качестве примера представлены ИК-спектры асфальтенов, толуола, 2 и 10 масс. % раствора ас-

фальтенов в толуоле. 

 

Рис. 1. ИК-спектры асфальтенов, толуола, 2 и 10%-ного раствора асфальтенов в толуоле. 

Видно, что в спектрах асфальтенов, толуола и модельных растворов зафиксированы полосы, соответству-

ющие различным структурным фрагментам (табл. 1). При этом спектры 2 и 10 масс. % растворов асфальтенов 

идентичны по положению полос, однако различаются по интенсивности поглощения.  
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Таблица 1 

Полосы поглощения выделенных асфальтенов, толуола,  

растворов асфальтенов в толуоле 2–10 масс. % 

Диапазон поглощения, 

см−1 
Интерпретация 

737–740 
Внеплоскостное деформационное колебание С–Н-связей ароматического кольца  

и деформационное (маятниковое) колебания С–Н-связей в (CH2)n группах (n ≥ 4) 

693–698 

Деформационные внеплоскостные колебания C–H- связей ароматического кольца 837–850 

890–897 

1 030–1 036 
Деформационные плоскостные колебания C–H- связей ароматического кольца*  
и валентные колебания S=O-связей в сульфоксидах 

1 080–1 090 Деформационные плоскостные колебания C–H- связей ароматического кольца* 

1 140–1 192 Деформационные плоскостные колебания C–H- связей ароматического кольца* 

1 375–1 383 Симметричные деформационные колебания С–H-связей в СН3 группах  

1 455–1 458 
Деформационные колебания С–Н-связей в СН2 группах  

и скелетные (валентные) колебания С=С-связей ароматического кольца* 

1493–1498 Скелетные (валентные) колебания С=С-связей ароматического кольца 

1 603–1 630 Валентные колебания С=С-связей ароматического кольца  

1 734–1 945 Обертоны ароматического кольца*  

2 869–2 876 Симметричные валентные колебания С–H-связей в СН2 группах 

2 919–2 924 Асимметричные валентные колебания С–H-связей в СН2 группах 

2 940–2 959 Асимметричные валентные колебания С–H-связей в СН3 группах 

3 015–3 080 Валентные колебания С–H-связей в ароматическом кольце 

* Характерно для толуола 

Спектр твердых асфальтенов, выделенных из нефти, показывает совпадение ключевых полос в области 

алифатических и ароматических колебаний (2 850–2 960, 1 370–1 460, 750–860 см
−1

) на спектрах растворов ас-

фальтенов. При этом видно, что значительный вклад в спектры растворов асфальтенов вносит толуол, о чем 

свидетельствуют полосы поглощения в областях 1 030–1 036, 1 375–1 603, 2 869–3 080 см
−1

. 

Полосы поглощения в диапазоне 1 030–1 036 см
−1

 обусловлены наложением сигналов деформационных 

колебаний C–H-связей ароматических колец и валентных колебаний S=O групп сульфоксидов. Частичное пере-

крытие этих сигналов с сигналами толуола затрудняет интерпретацию спектральных данных. 

Таким образом, несмотря на частичное наложение сигналов толуола, основные полосы ИК-спектров ис-

следуемых растворов совпадают с полосами спектра выделенных асфальтенов, что свидетельствует о сохране-

нии характерных для них откликов. При этом положение полос остается стабильным, тогда как интенсивность 

зависит от концентрации. Несмотря на вклад толуола, ИК-спектроскопия позволяет детектировать асфальтены 

даже в растворах. 

Количественный анализ 

Расшифровка ИК-спектров на основе отдельных полос поглощения не всегда позволяет построить надеж-

ные градуировочные зависимости из-за того, что спектры представляют собой наложение сигналов толуола 

и асфальтенов, а также содержат перекрывающиеся полосы. В таких случаях более эффективным подходом 

являются методы хемометрики, позволяющие обрабатывать весь спектральный массив целиком и выявлять 

скрытые зависимости между спектральными признаками и концентрацией анализируемого объекта. 

На рис. 2 представлен график счетов МГК-моделирования ИК-спектров всех исследуемых растворов, 

включая спектры чистого толуола.  

Распределение образцов на плоскости главных компонент ГК1–ГК2 демонстрирует отчетливую упорядо-

ченность, при которой образцы с различным содержанием асфальтенов в толуоле группируются в отдельные 

кластеры вдоль оси ГК2. Данное поведение указывает на наличие различий в спектрах, обусловленных измене-

нием концентрации. Совокупный вклад двух первых главных компонент в объясненную дисперсию составляет 
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не менее 85%, что позволяет рассматривать их как основные носители информации о вариативности спектров. 

Дополнительные 10%, приходящиеся на третью и четвертую главные компоненты, могут содержать вторичные 

или менее выраженные зависимости, однако ключевые структурные особенности данных адекватно отобража-

ются уже при проекции данных на плоскость ГК1–ГК2. 

 

Рис. 2. График счетов ГК1-ГК2 МГК-моделирования ИК-спектров для растворов асфальтенов.  
Процент объясненной дисперсии главной компонентой: ГК1 – 74%, ГК2 – 11%. 

Особый интерес представляет положение 10 масс. % раствора на графике счетов МГК. Несмотря на ожи-
даемое линейное распределение образцов в соответствии с увеличением концентрации асфальтенов, спектр 
10 масс. % образца располагается между 6 и 8 масс. %, не продолжая общий тренд. Подобное отклонение, веро-
ятно, связано с агрегацией асфальтенов, возникающей при высоких концентрациях, когда часть частиц форми-
рует надмолекулярные структуры и теряет способность равномерно диспергироваться в растворе. В результате 
меняются интенсивности полос и характер взаимодействия с ИК-излучением, что отражается на проекции 
спектра в пространстве главных компонент. Наблюдаемое смещение может указывать на нелинейность отклика 
системы и выход за пределы концентрационного диапазона, в котором сохраняется стабильность спектральной 
реакции. Такие отклонения подчеркивают чувствительность метода ИК-спектроскопии не только к содержанию 
вещества, но и к изменениям его физико-химического состояния в растворе. 

Поведение спектров в пространстве главных компонент подтверждает применимость метода ИК-спектро-
скопии для оценки концентрации асфальтенов и демонстрирует эффективность метода главных компонент как 
предварительного этапа обработки данных при построении калибровочных моделей. Разделение образцов 
в пространстве главных компонент также указывает на наличие скрытых факторов, отражающих физико-
химические различия между растворами. На основе полученных спектров представляется возможным построе-
ние регрессионных моделей, в частности с использованием метода проекции на латентные структуры PLS, 
обеспечивающих количественное определение содержания асфальтенов в органических растворах. 

Сравнение предсказанных значений концентраций с измеренными для построенной PLS-модели показало 
хорошее совпадение без выраженных систематических отклонений (рис. 3). 

 

Рис. 3. График предсказанных против измеренных значений  

концентраций асфальтенов в толуоле. 
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Модель была построена с использованием пяти скрытых переменных (главных компонент), по результа-

там моделирования коэффициент детерминации R
2
 составил 0,9544, среднеквадратичная ошибка предсказания 

RMSECV – 0,74 масс. %, что свидетельствует о высокой степени согласованности между предсказанными 

и реальными значениями и подтверждает приемлемую точность модели. 

Таким образом, модель PLS может быть успешно использована для построения градуировочных зависимо-

стей на основе ИК-спектров и последующего количественного определения содержания асфальтенов в неиз-

вестных растворах. 

Заключение 

ИК-спектроскопия показала высокую чувствительность к изменению концентрации асфальтенов в толуо-

ле. Выделены полосы, обладающие наибольшей информативностью; установлено, что, несмотря на частичное 

наложение сигналов толуола, основные полосы поглощения совпадают с полосами твердых образцов асфальте-

нов, что свидетельствует о сохранении откликов, характерных для асфальтенов. При этом положение полос 

остается стабильным, тогда как интенсивность зависит от концентрации. С использованием зарегистрирован-

ных ИК-спектров построены калибровочные модели на основе хемометрических методов МГК и PLS с коэф-

фициентом детерминации R
2
 0,9544 и среднеквадратичной ошибкой предсказания RMSECV 0,74 масс. %. По-

лученные результаты могут позволить прогнозировать содержание асфальтенов с высокой точностью и приме-

няться для задач экспресс-контроля нефтяных растворов. 
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A method for the quantitative analysis of model asphaltene solutions in toluene using infrared spectroscopy and chemometric 

techniques is presented. Solutions with concentrations of 2–10 wt.% were studied using the i-Red 7800 u-L spectrometer. Absorption 

bands characteristic of functional groups in asphaltenes were analysed. To improve the accuracy of quantitative determination, multi-

variate data analysis methods were applied – principal component analysis and partial least squares. The resulting regression model 

showed a high degree of agreement between measured and predicted concentration values. The obtained results demonstrate the po-

tential of the proposed approach for rapid analysis and quantitative assessment of asphaltenes in organic solutions. 
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