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Прямое преобразование метана, основного компонента природного газа, в более ценные 

углеводороды C2 (этан и этилен) открывает значительные возможности для утилизации 

природного газа. В данной статье исследован потенциал бинарных висмутсодержащих ката-

лизаторов в окислительной дегидродимеризации метана. Способность висмута активиро-

вать метан и способствовать образованию связей C-C делает его перспективным каталити-

ческим материалом. Объединение висмута с другим металлом или оксидом (например, молиб-

деном, ванадием, ниобием) в бинарном катализаторе дает возможность повысить актив-

ность и селективность по отношению к продуктам C2. В этом обзоре обсуждаются ключе-

вые аспекты этого подхода, включая механизм реакции, роль висмутового компонента и со-

катализатора, а также проблемы, связанные с контролем селективности продукта и ста-

бильности катализатора. Несколько висмутсодержащих бинарных оксидов Bi–M (M = Mn, Al, 

Pb, Sr, Ti, Zr, Sn, W) изучены при 730 °С в качестве катализаторов промышленно перспектив-

ной реакции окислительной дегидродимеризации метана в этан и этилен. Фазовый состав 

наиболее эффективных из них (Bi-Mn, Bi-Pb, Bi–Al) исследован методом рентгенофазового 

анализа; выявлены их каталитически активные компоненты. Изученные в работе бинарные 

оксидные системы приготовлены методом термического разложения совместно осажденных 

гидроксидов металлов. Исходными соединениями служили в основном азотнокислые соли ме-

таллов, в случае титана и олова – хлориды, а при синтезе вольфрамсодержащего контакта – 

паравольфрамат аммония. Введением малых количеств оксидов щелочных металлов, особенно Li, 

в состав Bi–Mn оксида удалось улучшить показатели его действия и достичь довольно значи-

мых значений выхода целевых веществ ~20% при 47%-ной конверсии метана и суммарной се-

лективности по этану и этилену 47–48%. 

Ключевые слова: окислительнаядегидродимеризация метана, этан, этен, оксиды ще-

лочных металлов, промоторы, каталитически активные компоненты, фазовый состав. 

Введение 

Окислительное дегидрирование углеводородов – сравнительно новый тип гетерогенно-каталитических реакций 

с участием кислорода, позволяющих получать ценные для практики дегидродимеры из доступного сырья [1–5]. Так, 

показана перспектива создания эффективного каталитического метода получения этана и этилена из метана, 

являющегося основным компонентом природного газа и в значительных количествах содержащегося в газах 

нефтедобычи, нефтепереработки и нефтехимии. По причине высокой стабильности и инертности в химических 

реакциях метан способен селективно превращаться в углеводороды С2 при умеренно высоких температурах 

(700–800 оС) лишь при наличии окислителя и в присутствии активного и селективного катализатора. Анализ 

литературы в области окислительной дегидродимеризации метана [6–9] показывает, что в этой реакции почти 

не изучены висмутсодержащие оксидные системы, многие из которых способны катализировать дегидросоче-

тание низших олефинов и толуола [10–12]. Представляло интерес выяснить, насколько они эффективны в ана-

логичной реакции метана.  

Методика эксперимента 

Изученные в работе бинарные оксидные системы приготовлены методом термического разложения сов-

местно осажденных гидроксидов металлов. Исходными соединениями служили в основном азотнокислые соли 

металлов, в случае титана и олова – хлориды, а при синтезе вольфрамсодержащего контакта – паравольфрамат 

аммония. Осаждение гидроксидов производили 25%-ным водным раствором аммиака с последующим упарива-

нием образующихся суспензий при перемешивании. Полученную массу формовали, сушили при 130 °С и под-

вергали ступенчатой прокалке на воздухе в течение 12 часов. Верхнюю температуру прокалки (800 °С) выбира-

ли исходя из условий каталитической реакции. Фазовый состав прокаленных катализаторов изучали методом 

рентгенографии на дифрактометре ДРОН-0.5. Удельную поверхность образцов измеряли хроматографически 

по тепловой десорбции аргона. Каталитическую активность висмутсодержащих оксидных систем в реакции 

окислительного превращения метана определяли в стеклянной проточной установке. Установка состоит из узла 

подготовки, регулирования и измерения расходов подаваемых из товарных баллонов газов (квалификации «ч» 
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с содержанием основного вещества 99.8%, дополнительно очищаемых и осушаемых в колонках с никельхромо-

вым катализатором, активированным углем, молекулярными ситами и кобальтированным силикагелем); обогрева-

емого электропечью реактора, изготовленного из кварцевой трубки диаметром 15 мм и имеющего U-образную фор-

му, и аналитического блока (хроматограф типа ЛХМ, через металлический шестиходовой кран сочлененный 

с установкой). Опыты выполнены в условиях, принятых в данной части за стандартные: температура 730 °С, 

состав смеси, об.%: СН4 – 30, О2 – 20, N2 – 50, время контакта 12 с [13–14]. 

Результаты и их обсуждение 

Результаты определения активности и селективности бикомпонентных висмутсо-держащих оксидов в ре-

акции окислительной дегидродимеризации метана приведены в табл. 1. 

Таблица 1 

Каталитические свойства бинарных висмутсодержащих оксидов  

в окислительном превращении метана 

Катализатор, 
Bi/M = 0.5 

Конверсия 
СН4, % 

Селективность, % 

этилен этан СО2 

Bi–Mn–O 41.6 24.3 10.4 65.2 

Bi–Al–O 25.0 13.9 24.9 61.2 

Bi–Pb–O 23.0 22.0 14.8 63.2 

Bi–Sr–O 18.0 17.4 10.2 72.4 

Bi–Ti–O 13.0 следы следы 99 

Bi–Zr–O 11.0 12.2 6.3 81.5 
Bi–Sn–O 1.0 следы следы 99 

Bi–W–O 1.0 следы следы 99 

*Bi/Al = 1 

Продуктами реакции были диоксид углерода, этан и этилен. Образование моноксида углерода и каких-
либо других кислородсодержащих соединений практически не наблюдали. 

Активность исследованных систем существенно зависит от природы второго компонента [15–17]. На оло-
во- и вольфрамсодержащих образцах степень превращения метана (почти полностью в СО2) не превышала 1%. 
Наиболее эффективными в целевой реакции оказались висмут-марганцевая, висмут-алюминиевая и висмут-
свинцовая оксидные композиции, катализирующие образование С2-углеводородов с 35–38%-ной избирательно-
стью при заметной (до 42%) глубине превращения метана. Варьированием состава висмут-свинцовой оксидной 
системы во всей области концентраций компонентов, включая индивидуальные оксиды, установлено (рис. 1а), 
что наилучшие показателя в целевой реакции демонстрирует представленный в табл. 1 образец с атомным 
отношением Bi/Pb = 0,5. Активные селективные Bi–Pb оксидные образцы, судя по нашим рентгенографическим 
данным и данным [18–20], представляют собой полифазные системы, содержащие наряду с исходными оксида-
ми также ряд соединений (Bi2O3∙PbO, 3Bi2O3∙2PbO, Bi2O3∙2PbO и т.п.). Среди висмут-алюминиевых катализато-
ров разного состава (рис. 1б) наибольшие значения выхода (12%) и селективности (41%) в отношении этана 
и этилена наблюдаются у контакта с 50–60 ат.% висмута; оксид алюминия катализирует только глубокое окис-
ление метана. По данным рентгенофазового анализа, наиболее активные в образовании С2-углеводородов вис-
мут-алюминиевые образцы содержат в своем составе фазу α-Bi2O3 в сочетании с одним или двумя соединения-
ми Bi2Al4O9, BiAlO3 и Bi24Al2O39. Соединение Bi2Al4O9, в заметных количествах наблюдаемое в катализаторах, 
обогащенных алюминием, по-видимому, малоселективно в реакции оксидегидродимеризации метана. 
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Рис. 1. Зависимости степени превращения метана (темные точки)  

и селективности в отношении С2-углеводородов (светлые точки)  

от состава висмут-свинцовой (а)  

и висмут-алюминиевой (б) оксидных систем. 
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Данные по каталитической активности висмут-марганцевой оксидной системы приведены в табл. 2. 

Таблица 2 

Каталитические свойства висмут-марганцевой оксидной системы  

в окислительном превращении метана 

Атомное  

отношение Bi:Mn 

Удельная  

поверхность, м2/г 

Конверсия СН4, 

% 

Селективность, % Выход С2, 

% 
Этилен Этан СО2 

0:100 5.3 25.8 Следы Следы 99 ̶ 

11:89 4.7 45.0 6.2 4.7 89.1 4.5 

25:75 4.9 34.4 22.2 9.4 68.4 9.9 
33:67 3.8 41.7 24.3 10.4 65.3 14.4 

43:57 4.4 37.7 10.1 6.4 83.5 6.1 

67:33 7.1 37.0 13.3 6.9 79.9 7.5 
100:0 6.3 15.7 17.2 14.0 68.8 4.9 

Индивидуальный оксид марганца катализирует только глубокое окисление метана, но бинарные сочетания 

его с оксидом висмута характеризуются более высокой в сравнении с Bi2O3 активностью в реакции оксидегид-

родимеризации метана. При 730 °С наибольший суммарный выход этана и этилена (14.4%) наблюдается 

на катализаторе с содержанием висмута 33 ат.%. Этот показатель при повышении температуры до 780 °С воз-

растает до 16.4%. Дальнейшее повышение температуры приводит к резкому снижению активности катализато-

ра, вызванному его плавлением и спеканием с кварцевым стеклом, из которого был изготовлен реактор. Со-

гласно данным рентгенографического анализа (рис. 2), свежеприготовленный индивидуальный оксид висмута 

представляет собой чистую α-Bi2O3. Оксид марганца является смесью Mn3O4cα-Mn2O3, количество которой не 

превышает 10–15%. Кроме этих оксидов, свежеприготовленные бикомпонентные катализаторы содержат фазу 

с наиболее интенсивными рефлексами при d/n – 2.96, 3.12 и 5.76. Анализ значений межплокостных расстояний 

и интенсивностей всех линий этой фазы позволил идентифицировать ее как соединение Bi2Mn4O10. Из него 

практически нацело состоит образец с оптимальным для его образования соотношением висмута к марганцу 

(33ат.% Bi, 67ат.% Mn). Она преобладает в образцах, содержащих 23 и 43 ат.% Bi, и в небольших количествах 

присутствует также и катализаторах с 11 и 67ат.% Bi (основными фазами в них являются соответственно 

α-Mn2O3 и α-Bi2O3). В условиях реакции соединение Bi2Mn4O10 в составе проработавшего в течение 2 ч Bi–Mn 

катализатора с 33 ат.% висмута частично (~25–30%) распадается на α-Bi2O3 и α-Mn2O3 (рис. 3).  

 

Рис. 2. Штрихрентгенограммы Bi–Mn оксидной системы. 1 – Bi2O3, 2 – Bi:Mn = 67:33,  

3 – Bi:Mn = 43:57, 4 – Bi:Mn = 33:67, 5 – Bi:Mn = 25:75, 6 – Bi:Mn =11:89, 7 – MnxOy. 
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Рис. 3. Штрихрентгенограммы Bi–Mn оксидного катализатора с содержанием  

висмута 33 ат.% до (а) и после (б) реакции окислительного превращения метана.  

 – Bi2O3,  – Mn2O3,  – Bi2Mn4O10. 

Наиболее эффективный из изученных Bi–Mn катализаторов с атомным отношением Bi/Mn = 0.5 промоти-

рован добавлением к исходным растворам нитратов висмута и марганца на стадии их совместного осаждения 

аммиаком и небольших количеств гидроксидов щелочных элементов – калия, натрия и лития. Предваритель-

ными экспериментами показано, что такой метод синтеза модифицированных висмут-марганцевых катализато-

ров более эффективен, чем пропитка гидроксидами щелочных металлов готового Bi–Mn контакта.  

На рис. 4 представлены данные о влиянии количества лития на каталитические свойства висмут-

марганцевой оксидной композиции. Видно, что введение в ее состав 2.8 ат.% лития увеличивает как степень 

превращения метана, так и суммарную избирательность по углеводородам С2 [21]. При дальнейшем увеличении 

концентрации добавки эти показатели снижаются. По-видимому, содержание щелочной добавки 2.8ат.% близко 

к оптимальному. Исходя из этого, в Bi–Mn катализатор были введены такие же количества натрия и калия. 

Результаты определения каталитической активности модифицированных контактов в одинаковых условиях 

даны в табл. 3. 

Таблица 3 

Показатели реакции оксидегидродимеризации метана на Bi–Mn (Bi/Mn = 0.5)  

оксидных катализаторов, модифицированных 2.8 ат.% щелочных металлов 

Катализатор 
Конверсия СН4, 

% 

Селективность Выход С2, 
% 

Этилен Этан СО2 

Bi–Mn 41.7 24.3 10.4 65.3 14.4 

Bi–Mn–K 43.0 21.9 14.7 63.4 15.7 
Bi–Mn–Na 43.9 24.8 14.3 60.9 17.2 

Bi–Mn–Li 46.8 28.3 14.8 56.9 20.2 

 *48.0 31.2 15.3 53.5 22.3 

*- данные при 780 оС. 

Видно, что эти щелочные добавки благоприятно сказываются на показателях висмут-марганцевого катали-

затора, повышая как степень превращения метана, так и избирательность образования этилена и этана. На ка-

лий- и натрийсодержащих образцах выход С2-углеводородов составляет 16–17% против 14.4% на немодифици-

рованном катализаторе. Еще более эффективной является добавка лития: содержащий его контакт дает 

при 730 °С более чем 20%-ный выход целевых веществ, возрастающий при повышении температуры реакции 

до 760 °С до 22.3%. Суммарная избирательность по этану и этилену при этом достигает 47%. 
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Рис. 4. Влияние количества введенного в Bi–Mn катализатор лития на конверсию метана (1)  

и селективность образования С2 – углеводородов (2) при 730 °С. 

Заключение 

При окислительной дегидродимеризация метана в углеводороды C2 с использованием бинарных висмут-

содержащих катализаторов, с помощью введения малых количеств оксидов щелочных металлов, особенно Li, 

в состав Bi–Mn оксида удалось улучшить показатели его действия, и это открывает значительные перспективы 

для эффективной конверсии природного газа в ценное химическое сырье. Уникальная способность висмута 

активировать метан в сочетании с возможностью избирательного образования связей C–C в бинарных катали-

заторах делает этот подход привлекательным способом использования природного газа [22]. Несмотря на то, 

что остаются проблемы с контролем селективности продукта и обеспечением стабильности катализатора, те-

кущие исследования активно направлены на устранение этих ограничений. Продолжающееся исследование 

конструкции катализатора, условий реакции и понимания механизма будет иметь решающее значение для реа-

лизации всего потенциала этой технологии. Разработка эффективных и надежных катализаторов на основе вис-

мута может проложить путь к более устойчивому и универсальному подходу к конверсии природного газа, 

открывая новые возможности для химической промышленности. 
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INTO C2-HYDROCARBONS ON BINARY BISMUTH-CONTAINING CATALYSTS 
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Direct conversion of methane, the main component of natural gas, into more valuable C2 hydrocarbons (ethane and ethylene) 

opens up significant opportunities for natural gas utilization. This article explores the potential of binary bismuth-containing catalysts 

in the oxidative dehydrodimerization of methane. Bismuth's ability to activate methane and promote the formation of C–C bonds 

makes it a promising catalytic material. Combining bismuth with another metal or oxide (e.g. molybdenum, vanadium, niobium) 

in a binary catalyst provides the opportunity to increase activity and selectivity towards C2 products. This review discusses key as-

pects of this approach, including the reaction mechanism, the role of the bismuth moiety and cocatalyst, and the challenges associated 

with controlling product selectivity and catalyst stability. Several bismuth-containing binary oxides Bi–M (M = Mn, Al, Pb, Sr, Ti, 

Zr, Sn, W) have been studied at 730°C as the catalysts for the industrially promising reaction of oxidative dehydrodimerization 

of methane into ethane and ethane. Phase composition of most efficient of them (Bi–Mn, Bi–Pb, Bi–Al) was investigated by XRD; 

the nature of their catalytically active components was revealed. The binary oxide systems studied in this work were prepared 

by the thermal decomposition of co-precipitated metal hydroxides. The starting compounds were mainly metal nitrate salts, 

in the case of titanium and tin – chlorides, and in the synthesis of tungsten-containing contact – ammonium paratungstate. The practi-

cally valuable yields of the aimed C2-hydrocarbons (~20–22%) at the methane conversion of 47% and total selectivity to ethane 

and ethane of 47–48% were reached by means of the insertion of small amounts of alkali metal oxides, especially Li, into Bi–Mn 

oxide. 

Keywords: methane oxidative dehydrodimerization, etane, alkali metal oxide promoters, catalysts active components, phase 

composition. 
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