
194 МАТЕМАТИКА и МЕХАНИКА 

УДК 539.3: 669.046.4: 517.977 

DOI: 10.33184/bulletin-bsu-2025.4.3 

ОПТИМАЛЬНЫЙ НАГРЕВ НЕОГРАНИЧЕННОЙ ПЛАСТИНЫ  

С УЧЕТОМ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ  

ОТ ТЕМПЕРАТУРЫ И ОГРАНИЧЕНИЙ НА ТЕРМОНАПРЯЖЕНИЯ 

© Н. Д. Морозкин*, В. И. Ткачев, Ю. Н. Морозкин 

Уфимский университет науки и технологий 

Россия, Республика Башкортостан, 450076 г. Уфа, ул. Заки Валиди, 32. 

*Email: MorozkinND@mail.ru 

В работе рассматривается задача оптимального осесимметричного нагрева неограни-

ченной пластины с учетом возникающих термонапряжений. Учитывается зависимость пре-

делов прочности и коэффициента теплопроводности от температуры. Для решения получен-

ной нелинейной задачи применяется метод последовательной линеаризации. На основе разра-

ботанного подхода предложен алгоритм выбора оптимального по быстродействию темпе-

ратурного режима, удовлетворяющего наложенным ограничениям. Приведены примеры рас-

четов, демонстрирующие эффективность алгоритма. Полученные результаты могут быть 

использованы при разработке технологий высокотемпературного нагрева. 

Ключевые слова: оптимальный нагрев, термонапряжения, пределы прочности, фазо-
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Введение 

Вопросы управления процессами нагрева с учетом напряженного состояния материала до настоящего вре-

мени освещены в научной литературе недостаточно, несмотря на их важность. В большинстве исследований 

рассматриваются постановки без ограничений или с допущением постоянства теплофизических коэффициентов 

и линейной зависимости пределов прочности от температуры [1–2]. 

Настоящая работа ориентирована на случай, когда пределы прочности материала при сжатии и растяже-

нии существенно зависят от температуры. В условиях высокотемпературного нагрева этот фактор становится 

критическим, т.к. пределы прочности могут изменяться в несколько раз [3]. Кроме того, учитывается зависи-

мость коэффициента теплопроводности от температуры, что также существенно влияет на результаты расчетов. 

Последний фактор приводит к нелинейному уравнению состояния. Как и в работе [4], исходное нелинейное 

уравнение теплопроводности линеаризуется и его решение находится методом последовательных приближе-

ний. На каждой итерации решение линеаризованного уравнения выписывается с использованием интегрального 

преобразования Фурье. Полученная задача оптимального управления решается с помощью алгоритма, изло-

женного в работе [5]. Приведены результаты расчетов. 

 Постановка задачи

Процесс осесимметричного внешнего нагрева неограниченной пластины описывается следующими урав-

нениями: 

с𝜌
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝜆(𝑇)

𝜕𝑇

𝜕𝑥
) , 𝑥 ∈ (0, 𝑥̅), 𝑡 ∈ (0, 𝑡̅), 0 < 𝑡̅ < ∞         (1) 

𝑇(𝑥, 0) = 𝑝 = 𝑐𝑜𝑛𝑠𝑡, 𝑥 ∈ [0, 𝑥̅]     (2) 

𝜆(𝑇)
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
|

𝑥=𝑥̅
=  𝛼(𝑣(𝜏) − 𝑇(𝑥, 𝑡))|

𝑥=𝑥̅
 𝑡 ∈ [0, 𝑡̅]    (3) 

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
|

𝑥=0
= 0, 𝑡 ∈ [0, 𝑡̅],      (4) 

где t – время, x – пространственная переменная в 𝑇(𝑥, 𝑡) – температура, a – коэффициент температуропроводно-

сти, 𝛼 – коэффициент теплообмена, 𝜆(𝑇) – коэффициент теплопроводности, 𝑣(𝑡) – температура греющей среды 

(управление): 

𝑣(𝑡)  ∈ 𝑉, 𝑉 =  {𝑣 =  𝑣(𝑡), 0 ≤ 𝑣− ≤ 𝑣(𝑡) ≤ 𝑣+, 𝑣(𝑡)  ∈ 𝐿2[0, 𝑡̅]}.         (5) 

Будем предполагать, что коэффициент теплопроводности  

𝜆(𝑇) > 0 и 0 <  𝛽1  ≤  𝜆(𝑇) ≤ 𝛽2.     (6) 

В работе рассматриваются материалы, склонные к хрупкому разрушению. В процессе нагрева тело испы-

тывает как растягивающие, так и сжимающие напряжения. Согласно исследованиям [1; 6], при осесимметрич-

ном нагреве максимальные растягивающие напряжения формируются на оси пластины, в то время как сжима-

ющие достигают наибольших значений на ее поверхности. Если предположить, что края пластины жестко за-

щемлены, ограничения. В предположении, что модуль упругости Е и коэффициент линейного расширения 𝛼𝑇 

постоянны, а края пластины жестко защемлены в квазистатической постановке задача термоупругости решает-

ся аналитически [6].  
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𝛼𝑇𝐸

1−𝜈
(− 𝑇(0, 𝑡) + 

1

𝑥̅
∫ 𝑇(𝑥, 𝑡)𝑑𝑥

𝑥̅

0
) ≤  𝜎𝑝(𝑇(0, 𝑡)).    (7) 

𝛼𝑇𝐸

1−𝜈
(𝑇(𝑥̅, 𝑡) +  

1

𝑥̅
∫ 𝑇(𝑥, 𝑡)𝑑𝑥

𝑥̅

0
) ≤  𝜎𝑐(𝑇(𝑥̅, 𝑡)).     (8) 

Здесь 𝜈 – коэффициент Пуассона, 𝜎𝑐 и 𝜎𝑝 – соответственно пределы прочности на сжатие и растяжение. 

Задача 1. Требуется найти управление 𝑣0(𝑡) ∈ 𝑉, которое при выполнении с заданной точностью 𝜀1 ≥ 0 

неравенств (7), (8) переведет систему (1), (3), (4) из положения (2) в положение 𝑇̅(𝑥) c фиксированной точно-

стью 𝜀2 ≥ 0 за минимальное время 𝑡0, 0 ≤  𝑡0 ≤ 𝑡̅ , т.е. 

∫ [𝑇[𝑥, 𝑡0] − 𝑇̅(𝑥)]2𝑑𝑥
𝑥̅

0
 ≤ 𝜀2.     (9) 

Линеаризация. Решение линеаризованной системы уравнений 

Будем искать решение системы уравнений (1)–(4), используя метод последовательных приближений [4]. 

Рассмотрим итерационный процесс: 

𝑐𝜌
𝜕𝑇𝑘(𝑥,𝑡)

𝜕𝑥
− 𝜆0

𝜕2𝑇𝑘(𝑥,𝑡)

𝜕𝑥2 =  𝜆0
𝜕

𝜕𝑥
[(𝜆

(𝑇𝑘−1(𝑥,𝑡))

𝜆0
− 1)

𝜕𝑇𝑘−1(𝑥,𝑡)

𝜕𝑥
] ;       (10) 

𝑇𝑘(𝑥, 𝑡) = 𝑝;      (11) 

[𝜆0
𝜕𝑇𝑘−1(𝑥,𝑡)

𝜕𝑥
− 𝛼(𝑣(𝑡) − 𝑇𝑘(𝑥, 𝑡))]

𝑥=𝑥̅
=  [(𝜆0 − 𝜆(𝑇𝑘(𝑥, 𝑡)))

𝜕𝑇𝑘−1(𝑥,𝑡)

𝜕𝑥
]

𝑥=𝑥̅
;  (12) 

𝜕𝑇𝑘(𝑥,𝑡)

𝜕𝑥
|

𝑥=0
= 0;      (13) 

где 

𝜆0 =
𝛽1+𝛽2

2
.        (14) 

Аналогично работе [4] можно показать, что последовательность {𝑇𝑘(𝑥, 𝑡)}, 𝑘 = 1,2, …, сходится к решению 

𝑇(𝑥, 𝑡) системы уравнений (1)–(4) в пространстве 𝑊2
1,0

. 

Для удобства дальнейших расчетов введем следующие безразмерные переменные: 

𝑙 =  
𝑥

𝑥̅
 , 𝜃 =  𝛼𝑇(𝑇 − 𝑝), 𝜏 =  

𝜆0 𝑡

𝑐𝜌𝑥̅2  , 𝐵𝑖 =  
𝛼𝑥̅

𝜆0 
 , 𝜃̅ =  𝛼𝑇(𝑇̅ − 𝑝), 𝑢 =  𝛼𝑇(𝑣 − 𝑝), 𝜎𝑐

∗ =
(1−𝜈)𝜎𝑐

𝐸
, 𝜎𝑝

∗ =
(1−𝜈)𝜎𝑝

𝐸
 ,  𝑢− =

 𝛼𝑇(𝑣 − 𝑝), 𝑢+ =  𝛼𝑇(𝑣∗ − 𝑝). 

В этих переменных система уравнений (10)–(13) запишется в виде: 
𝜕𝜃𝑘

𝜕𝜏
−  

𝜕2𝜃𝑘

𝜕𝑙2 =  
𝜕

𝜕𝑙
[(

𝜆(𝜃𝑘−1)

𝜆0
− 1)

𝜕𝜃𝑘−1

𝜕𝑙
] ;    (15) 

𝜃𝑘(𝑟, 0) = 0;               (16) 
𝜕𝜃𝑘(𝑙,𝑡)

𝜕𝑙
|

𝑙=1
= 𝐵𝑖[𝑢(𝜏) − 𝜃𝑘(1, 𝜏)] +

𝜆0− 𝜆 (𝜃𝑘−1(1,𝑟))

𝜆0 

𝜕𝜃𝑘−1(1,𝜏)

𝜕𝑙
;        (17) 

𝜕𝜃𝑘(𝑙,𝜏)

𝜕𝑙
|

𝑙=0
= 0.                (18) 

Ограничения на термонапряжения (7), (8) запишутся в виде неравенств: 

−𝜃𝑘(0, 𝜏) + ∫ 𝜃𝑘(𝑙, 𝜏)
1

0
𝑑𝑙 ≤  𝜎𝑝

∗(𝜃𝑘(0, 𝜏));          (19) 

𝜃𝑘(1, 𝜏) − ∫ 𝜃𝑘(𝑙, 𝜏)
1

0
𝑑𝑙 ≤  𝜎𝑐

∗(𝜃𝑘(0, 𝜏)).          (20) 

Решение линейных уравнений (15)–(18) будем искать с помощью интегрального преобразования Фурье [7]: 

𝜃𝐹(𝜇, 𝜏) =  ∫ 𝜃(𝑙, 𝜏) cos(𝜇, 𝑙)𝑑𝑙
1

0
.                (21) 

Применив к обеим частям уравнения (15) интегральное преобразование (21) и выбрав 𝜇 как корень уравнения 

𝜇 sin(𝜇) − 𝐵𝑖 cos(𝜇) = 0,          (22) 

с учетом граничных условий (17), (18) уравнение (15) в изображениях запишется в виде 
𝜕𝜃𝐹(𝜇,𝜏)

𝜕𝜏
= 𝐵𝑖 cos 𝜇 (𝑢(𝜏) + 𝐼𝑘−1) − 𝜇2𝜃𝐹(𝜇, 𝜏),              (23) 

где                𝐼𝑘−1 =  ∫ (
𝜆(𝜃𝑘−1)

𝜆0
− 1)

𝜕𝜃𝑘−1

𝜕𝑙

sin (𝜇𝑙)

sin 𝜇
𝑑𝑙

1

0
. 

Формула обращения вытекает из теории рядов Фурье [7] и в рассматриваемом случае с учетом (23) запи-

сывается в виде 

𝜃𝑘(𝑙, 𝑡) =  ∑ 𝐷𝑛 𝑥𝑛
𝑘(𝑢, 𝜏) cos(𝜇𝑛𝑙)∞

𝑛=1 .               (24) 

где 𝜇𝑛, 𝑛 = 1,2, … – корни уравнения (22). 

𝐷𝑛 =
2 𝐵𝑖

(𝜇𝑛
2+𝐵𝑖+𝐵𝑖2) sin(𝜇𝑛) 

.       (25) 

𝑥𝑛
𝑘(𝑢, 𝜏), 𝑛 = 1,2, … – компонента решения дифференциального уравнения 

𝑑𝑥𝑛
𝑘

𝑑𝜏
=  −𝜇𝑛

2𝑥𝑛
𝑘 + 𝜇𝑛(𝑢 + 𝐼𝑛

𝑘−1),  𝑥𝑛
𝑘(0) = 0, 𝑛 = 1,2, …              (26) 

Здесь  

𝐼𝑛
𝑘−1 =  ∫ (

𝜆(𝜃𝑘−1)

𝜆0
− 1)

1

0

𝜕𝜃𝑘−1

𝜕𝑙

sin(𝜇𝑙)

sin 𝜇
𝑑𝑙.    (27) 
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Для заданного конечного безразмерного распределения температуры 𝜃̅(𝑙) справедливо разложение 

𝜃̅(𝑙) = ∑
1

‖cos(𝜇𝑛𝑙)‖2 𝑔𝑛 cos(𝜇𝑛𝑙) =  ∑
𝐷𝑛𝑔𝑛 cos(𝜇𝑛𝑙) 

sin 𝜇𝑛

∞
𝑛=1

∞
𝑛=1 ,           (28) 

поскольку система функций {cos (𝜇𝑛𝑙)}𝑛=1 ортогональна и полна в L2[0,1].  Здесь 

𝑔𝑛 =  ∫ 𝜃̅(𝑙) cos(𝜇𝑛𝑙) 𝑑𝑙
1

0
. 

С учетом конкретного вида 𝜃𝑘(𝑙, 𝑡) в (24) неравенства (19), (20) можно переписать в виде 

∑ с1𝑛
∞
𝑛=1 𝑥𝑛

𝑘  ≤ 𝜎𝑝
∗(∑ 𝐷𝑛

∞
𝑛=1 𝑥𝑛

𝑘),               (29) 

∑ с2𝑛
∞
𝑛=1 𝑥𝑛

𝑘  ≤ 𝜎𝑐
∗(∑ 𝐷𝑛

∞
𝑛=1 𝑥𝑛

𝑘 cos 𝜇𝑛),        (30) 

где с1𝑛 = 𝐷𝑛 (
sin 𝜇𝑛

𝜇𝑛
− 1) , с2𝑛 = 𝐷𝑛 (cos 𝜇𝑛 −

sin 𝜇𝑛

𝜇𝑛
). 

Конечномерная аппроксимация 

Ограничившись в соотношении (24) первыми N членами ряда, систему (26) можно записать в виде 
𝑑𝑋𝑁

𝑑𝜏
=  −𝐴𝑁𝑋𝑁 + 𝐵𝑁𝑢 + 𝐼𝑁 , 𝑋𝑁(0)  = 0,        (31) 

где 𝑋𝑁 = (𝑥1
𝑘 , … , 𝑥𝑛

𝑘), 𝐴𝑁 = (𝜇1
2, … , 𝜇𝑛

2), 𝐵𝑁 = (𝜇1, … , 𝜇𝑛), 𝐼𝑁 = (𝜇1𝐼1
𝑘−1, … , 𝜇𝑛𝐼𝑛

𝑘−1)𝑇. 

Ограничения (29), (30) перепишутся в виде  

С𝑁𝑋𝑁 ≤ 𝐹𝑁 ,                 (32) 

где  

С𝑁 =  (
с11  с12  … 
с2𝑁 с22 …  

𝑐1𝑁

𝑐2𝑁
) , 𝐹𝑁 = (

𝐹1

𝐹2
), 

𝐹1 =  𝜎𝑝
∗(∑ 𝐷𝑛

∞
𝑛=1 𝑥𝑛

𝑘), 𝐹2 = 𝜎𝑐
∗(∑ 𝐷𝑛

∞
𝑛=1 𝑥𝑛

𝑘 cos 𝜇𝑛).           (33) 

В результате будем решать приведенную ниже задачу. 

Задача 2. Найти управление 𝑢0(𝜏) ∈ 𝑈, при котором на решениях системы (31) за минимальное время 𝜏0 

будет достигнуто выполнение неравенства 

∑
D𝑛 [sin 𝜇𝑛𝑥𝑛

𝑘(𝑢0, 𝜏0)−𝑔𝑛]2

𝐵𝑖 sin 𝜇

𝑁
𝑛=1 ≤  𝜀2, 

при условии, что с точностью 𝜀1 на промежутке [0, 𝜏0] будет выполнено неравенство (32).  

Здесь 𝑈 = {𝑢 = 𝑢(𝜏), 0 ≤ 𝑢̅  ≤ 𝑢+, 𝑢(𝜏) ∈ 𝐿2[0, 𝜏̅]}. 

Вычислительный эксперимент 

Поставленная задача 2 на каждой итерации решалась с помощью алгоритма, предложенного в работе [5]. 

Таблица 1 

Исходные данные 

Параметр Наименование параметра Значение Ед. измерения 

𝜌 

с 

𝑥̅ 

𝛼 

𝑝 

𝑇̅ 

𝑣− 

𝑣+ 

𝛼𝑇 

𝐸 

𝜈 
 

плотность материала 

удельная теплоемкость 
половина толщины пластины 

коэффициент теплообмена 

начальная температура 
заданное конечное распределение 

минимальное значение температуры греющей среды 
максимальное значение температуры греющей среды 

коэффициент линейного расширения 

модуль упругости 
коэффициент Пуассона 

8 130 

368 
0,23 

200 

20 
920 

800 
1 600 

0,18 ∙ 10−4 

145 ∙ 105 
0,3 

 

кг/м3 

Дж/кг ∙ ℃ 
м 

Вт/(м2 ∙ ℃) 

℃ 

℃ 

℃ 

℃ 

1/℃ 
Па 

безразмерная 

величина 

Таблица 2 

Зависимость пределов прочности от температуры 

Наименование параметра Ед. измерения Значения 

Температура 

Предел прочности на сжатие 
Предел прочности на растяжение 

℃ 
мПа 

мПа 

20 

1 100 
680 

975 

580 
540 

1 050 

470 
370 

1 100 

310 
200 

1 150 

210 
140 

Таблица 3 

Зависимость коэффициента теплопроводности от температуры 

Температура 

Коэффициент теплопроводности 
℃ 

Вт/(м2 ∙ ℃) 

20 

10,05 

200 

15,07 

500 

18,84 

600 

20,51 

700 

22,19 

800 

24,28 

900 

26,38 

1 000 

28,05 
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После перехода к безразмерным величинам данные в табл. 2 аппроксимировалась функциями: 

𝜎𝑐
∗ = (−0, 023𝑒0,00303𝜃 + 0,747); 

𝜎р
∗ = (−0, 003𝑒0,0046𝜃 + 0,476); 

а данные табл. 3 – линейной функцией  

𝜆(𝜃) = 10,68 + 9,74𝜃. 

Линеаризованная задача решалась при различных значениях N начиная с N = 3. При 𝑁 ≥ 6 изменение вре-

мени быстродействия стало несущественным и дальнейшие расчеты проводились при N = 6. Результаты расче-

тов представлены на рис. 

 

Рис. 1. Результаты расчетов. 

На графике а) рисунка показаны временные изменения оптимального управления (кривая 1), температуры 

поверхности (кривая 2) и температуры центра пластины (кривая 3) при оптимальном режиме нагрева. Опти-

мальная продолжительность нагрева составила 3,98 ч. На графике б) приведены временные зависимости преде-

ла прочности при сжатии (кривая 1) и сжимающих термонапряжений (кривая 2), рассчитанные в условиях оп-

тимального управления. Соответственно, на графике в) представлены изменения предела прочности на растя-

жение (кривая 1) и растягивающих термонапряжений (кривая 2). Из анализа графиков б) и в) следует, что ско-

рость нагрева в основном ограничивается величиной сжимающих термонапряжений. При этом в научных ис-

следованиях традиционно основное внимание уделялось растягивающим напряжениям. 

Заключение 

В статье предложен алгоритм оптимизации осесимметричного нагрева неограниченной пластины с учетом 

зависимости пределов прочности и коэффициента теплопроводности от температуры. Разработанный алгоритм 

позволяет формировать режимы нагрева, обеспечивающие максимальную скорость процесса при соблюдении 

ограничений на термонапряжения. Приведенный пример подтвердил эффективность предложенного подхода 

и его применимость для практических задач высокотемпературной обработки материалов. 
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This paper examines the problem of optimal axisymmetric heating of an infinite plate, taking into account the resulting thermal 

stresses. The dependence of the ultimate strength and thermal conductivity on temperature is considered. A sequential linearization 

method is used to solve the resulting nonlinear problem. Based on the developed approach, an algorithm is proposed for selecting 

the optimal temperature regime in terms of response time, satisfying the imposed constraints. Example calculations are provided 

demonstrating the algorithm's effectiveness. The obtained results can be used in the development of high-temperature heating tech-

nologies. 
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