Parametrics diagnostics of single-GTE on the basis of neural network modeling workflows

Authors

  • Zhulen Selestin Raerindzatuvu FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)
  • Anas Saidovich Gishvarov FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

Keywords:

parametric diagnostics; gas turbine engine (GTE); neural network modeling; workflow; efficiency.

Abstract

The problem of increasing the efficiency of the parametric diagnostic single-shaft gas turbine engine, based on neural network modeling of its workflows. Spend a selection of the type of neural network diagnostic model, as well as a study of the influence, the efficiency of diagnosis of the condition: the number of the analyzed NA models from which conducted the choice of optimal diagnostic model, the type of neural network model, the volume of training sample, the number and the list of controlled parameters of the engine. Recommendations on the use of software "Gasturb" and "Statistica Neural Networks".

Author Biographies

Zhulen Selestin Raerindzatuvu, FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

asp. kaf. AD. Dipl. inzhener po teh. ekspl. LA i AD (UGATU, 2013). Issl. v obl. diagnostiki i prognozirovaniya sostoyaniya tehnicheskih sistem

Anas Saidovich Gishvarov, FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

zav. kaf. AD, Dipl. inzhener po aviacionnym dvigatelyam (UAI, 1973). D-r tehn. nauk po tepl. dvigatelyam LA (UAI, 1993). Issl. v obl. nadezhnosti, ispytaniy i prognozirovaniya sostoyaniya  tehnicheskih sistem

Published

2017-15-12

Issue

Section

AIRCRAFT AND ROCKET AND SPACE TECHNOLOGY