Supercomputer modeling in coefficient inverse problems  of wave tomography with attenuation

Authors

  • Sergey Yurevich Romanov

Keywords:

coefficient  inverse  problems;  wave  equation;  computer modeling; ultrasonic tomography; parallel computing; supercomputer.

Abstract

 Efficient methods are proposed for solving inverse  problems of wave computer tomography. Inverse problem  is viewed as a coefficient inverse problem for the wave  equation for unknown functions that characterize both the  velocity and attenuation in the diagnosed region. Mathematical model has to deal with diffraction, refraction, attenuation effects. Algorithms are based on direct computation of the gradient of the residual functional. We used  data over the entire boundary of the computational domain (full?range tomography scheme) to solve the inverse  problem.  Mathematical  modeling  methods  investigated  the effects of the attenuation to the possibility of reconstruction. The problem of the large amount of computation for solving the inverse problem is overcome by using a  supercomputer cluster?type. Used explicit finite difference  scheme is ideally suited for parallelization. Computations  of model problems show that it is possible to reconstruct  not only the velocity, but also the attenuation in the diagnosed medium. The algorithms that we developed can be  used in the design of ultrasound tomographs, electromagnetic diagnostics, seismic exploration, and earthquake engineering.   

Published

2018-25-07

Issue

Section

INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT