Gesture recognition system

Authors

  • Artem Valerevich Chuykov FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)
  • Aleksey Mihaylovich Vulfin FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

Keywords:

gesture recognition; neural networks; support vector machines; local binary patterns; AdaBoost; histogram of oriented gradients; OpenCV; MATLAB

Abstract

The goal of this research is to improve the algorithms for gesture recognition based on the analysis of a two-dimensional space model using neural network technologies. Completed analytical review of existing software solutions and approaches to the implementation the gesture recognition systems, including detection, tracking and recognition stage. Also block diagrams of the gesture recognition module were drawn up, appropriate descriptors and classifers have been selected for better results. To reduce the dimensionality of the feature vector, it was decided to employ a special associative network with a bottleneck and multilayer perceptron with a probabilistic principal component analysis. Also evaluated the efficiency of gesture recognition module.

Author Biographies

Artem Valerevich Chuykov, FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

student kaf. VTiZI UGATU. Dipl. bakalavra po napravleniyu: vychislitelnye mashiny, kompleksy, sistemy i seti  (UGATU, 2016). Issl. v obl. neyrosetevyh tehnologiy i kompyuternogo zreniya

Aleksey Mihaylovich Vulfin, FGBOU VO «Ufimskiy gosudarstvennyy aviacionnyy tehnicheskiy universitet» (UGATU)

docent kaf. VTiZI UGATU. Dipl. inzhenera-programmista (UGNTU, 2008). Kandidat tehnicheskih nauk po sistemnomu analizu, upravleniyu i obrabotke informacii (UGATU, 2012). Issl. v obl. intellektualnogo analiza dannyh i modelirovaniya slozhnyh tehnicheskih sistem

Published

2017-28-09

Issue

Section

INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT